23rd June, 2022

Chronological:

98.  C.C. Lim and S.K. Lai, J. Phys.: Condens. Matter 34, 325201 (2022)
Metadynamics molecular dynamics and isothermal Brownian-type molecular dynamics simulations for the chiral cluster Au18.


97.  S.K. Lai and C.C. Lim, J. Comput. Chem. 42, 310-325 (2021)
Neutral gold clusters studied by the isothermal Brownian-type molecular dynamics and metadynamics molecular dynamics simulations.


96.  C.C. Lim and S.K. Lai, J. Phys. Chem. A 124, 8679-8691 (2020)
Enantiomeric transitions in the chiral cluster Au15 studied by a reaction coordinate deduced from molecular dynamics simulations.


95.  S.K. Lai and Wafa Maftuhin, Comput. Phys. Commun. 236, 164-175 (2019)
An efficient optimization algorithm that hybridizes DFTB and DFT theories both operated within the modified basin hopping method.


94.  T.W. Yen and S.K Lai, Theor. Chem. Acc. 137,134 (2018)
The subtlety of resolving orbital angular momenta in calculating Hubbard U parameters in the density functional tight-binding theory and its delicacy is illustrated by the calculated magnetic properties of carbon clusters.


93.  S.K. Lai and Thi Thu Trang Van, Colloids and Surfaces A: Physicochemical and Enginerring Aspects 532, 270-281 (2017)
Two-stage kinetic phase transition in a platelet-colloid mixture.


92.  T.W. Yen, T.L. Lim, T.L. Yoon and S.K. Lai, Comput. Phys. Commun. 220, 143-149 (2017) 
Studying the varied shapes of gold clusters by an elegant optimization algorithm that hybridizes the density functional tight-binding theory and the density functional theory.


91.  S.K. Lai, Icuk Setiyawati, T.W. Yen and Y.H. Tang, Theor. Chem. Acc. 136, 20 (2017)
Studying lowest energy structures of carbon clusters by bond-order empirical potentials.


90. T.W. Yen and S.K. Lai, J. Magn. Magn. Mater. 397, 295-309 (2016)
Interplay between structural symmetry and magnetism in Ag-Cu.


89. T.W. Yen and S.K. Lai, J. Chem. Phys. 142, 084313 (2015)
Use of density functional theory method to calculate structures of neutral carbon clusters
Cn (3 ≤ n ≤ 24) and study their variability of structural forms.


88. P.J. Hsu, S.A. Cheong and S.K. Lai, J. Chem. Phys. 140, 204905 (2014)
Precursory signatures of protein folding/unfolding: From time series correlation analysis to atomistic mechanisms.


87. Po Jen Hsu, S.K. Lai and Arnaldo Rapallo, J. Chem. Phys. 140, 104910 (2014)
Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets.


86. T.L. Yoon, T.L. Lim, T.K. Min, S.H. Hung, N. Jakse and S.K. Lai, J. Chem. Phys. 139, 204702 (2013)
Epitaxial growth of graphene on 6H-silicon carbide substrate by simulated annealing method.


85. Ping-Han Tang, Ten-Ming Wu and S.K. Lai, J. Phys.. Conf. Ser. 454, 012026 (2013)
Order parameter by instantaneous normal mode analysis for melting behaviour of cluster Ag17Cu2.


84. Ping-Han Tang, Ten-Ming Wu, P.J. Hsu and S.K. Lai , J. Chem. Phys. 137, 244304 (2012)
Melting behaviour of Ag14 cluster: An order parameter by instantaneous normal modes.


83. N. Jakse, R. Arifin and S.K. Lai, Condensed Matter Physics. 14. 43802 (2011)
Growth of graphene on 6H-SiC by molecular dynamics simulation.


82. Ping-Han Tang, Ten-Ming Wu, Tsung-Wen Yen, S.K. Lai and P.J. Hsu, J. Chem. Phys. 135, 094302(2011)
Comparative study of cluster Ag17Cu2 by instantaneous normal mode analysis and by isothermal Brownian-type molecular dynamics simulation.


81. S.K. Lai, Y.T. Lim, P.J. Hsu, and Siew Ann Cheong, Compt. Phys. Commun. 182. 1013 (2011)
Dynamical Study of metallic clusters using the statistical method of time series clustering


80. S.K. Lai and X.H. Xiao, J. Chem. Phys. 132, 044905 (2010)
Phase diagram of colloid-rod system


79. Hao Lang Trinh, G.F. Wang, and S.K. Lai, J. Chem. Phys. 132, 024910 (2010)
Free energy landscapes and volumes of coexisting phases for a colloidal dispersion


78. Tsung-Wen Yen, P.J. Hsu, and S.K. Lai, e-J. Surf. Sci. Nanotech. 7, 149-156 (2009).
Melting behavior of noble-metal-based bimetallic clusters


77. P.J. Hsu, J.S. Luo, S.K. Lai, J.F. Wax, and J-L Bretonnet, J. Chem. Phys. 129, 194302 (2008).
Melting scenario in metallic clusters


76. M. Iwamatsu and S.K. Lai, J. Non-Cryst. Solids. 353, 3698 (2007).
Lowest-energy structures of 13-atom binary clusters: Do icosahedral clusters exists in binary alloy?


75. K.L. Wu, S.K. Lai, and J.L. Bretonnet, J. Non-Cryst. Solids. 353, 3737 (2007).
Study of phase diagram domains


74. Tsung-Wen Yen, S.K. Lai, N. Jakse, and J.L. Bretonnet, Phys. Rev. B 75, 165420 (2007).
Thermal and geometric properties of alloy clusters studied with Brownian-type isothermal molecular
dynamics simulations
 

73. K.L. Wu, J.H. Wei, S.K. Lai, and Y. Okabe, J. Phys. Chem. B 111, 8946 (2007).
Energy and enthalpy distributions for a few physical systems
 

72. K.L. Wu and S. K. Lai, Colloids Surf. B: Biointerfaces. 56, 290 (2007).
Thermal response of a microgel system
 


71. P. J. Hsu and S. K. Lai, J. Chem. Phys. 124, 044711 (2006).
Structure of bimetallic clusters

70. L. Zhan, Jeff Z. Y. Chen, W. K. Liu, and S. K. Lai, J. Chem. Phys. 122, 244707 (2005).
Synchronous multicanonical basin hopping methods and its application to cobalt nanoclusters
 


69. K. L. Wu, S. K. Lai, and W. D. Lin, Molecular Simulation. 31, 399 (2005).
Finite temperature properties for nanoclusters zinc
 


68. K. L. Wu and S. K.Lai, Langmuir 21, 3238 (2005).
Theoretical studies of the early stage kinetics of coagulation for a charged colloidal dispersion
 


67. G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004).
Domains of phase separation of a charged colloidal dispersion driven by electrolytes
 


66. S. K. Lai, W. D. Lin, K. L. Wu, W. H. Li, and K. C. Lee, J. Chem. Phys. 121, 1487 (2004).
Specific heat and Lindemann-like parameter of metallic clusters: mono- and polyvalent metals
 


65. S. K. Lai, C. Y. Kau, Y. W. Tang, and K. Y. Chan, Phys. Rev. E 69, 051203 (2004) .
Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores

 


64. K. L. Wu, C.C. Chang, and S. K. Lai, Phys. Chem. Chem. Phys. 6, 1369 (2004).
Phase diagram for an attractive square well plus a linear tail potential within the van der Waals-like theory
 


63. L. Zhan, B. Piwowar, W.K. Liu, P. J. Hsu, S.K. Lai, and Jeff Z. Y. Chen, J. Chem. Phys. 120, 5536 (2004).
Multi-canonical basin-hopping: a new global optimization method for complex systems
 


62. W. H. Li, S. Y. Wu, C. C. Yang, F. C. Tsao, S. K. Lai, and K. C. Lee, Synthetic Metal. 135-136, 811 (2003).
Quantum thermal contraction of Au nanoparticles
 


61. S.K. Lai, P.J. Hsu, K. L. Wu, W. K. Liu, and M. Iwamatsu, J. Chem. Phys. 117, 10715 (2002).
Structures of metallic clusters: mono- and polyvalent metals
 


60. W. H. Li, S. Y. Wu , C. C. Yang, S. K. Lai, K. C. Lee, H. L. Huang, and H. D. Yang, Phys. Rev. Lett. 89, 135504 (2002).
Thermal contraction of Au nanoparticles
 


59. S. K. Lai and K. L. Wu, Phys. Rev. E 66, 041403 (2002).
Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion
 


58. G. F. Wang and S. K. Lai, J. Non-Cryst. Solids. 307-310, 812 (2002).
Liquid-glass re-entrant behavior in a charge-stabilized colloidal dispersion
 


57. G. F. Wang and S. K. Lai, J. Non-Cryst. Solids. 312-314, 236 (2002).
Phase diagram for an attractive triangular potential within van der Waals like theory
 


56. S. K. Lai,W. P. Peng, and G. F. Wang, Phys. Rev. E 63, 041511 (2001).
Realistic calculation of the low- and high-density liquid phase separation in a charged colloidal dispersion
 


55. S. K. Lai, G. F. Wang, and W. P. Peng, AIP Conference Proceedings -- June 22, 2000 -- Volume 519, pp. 99-110 (STATISTICAL PHYSICS: Third Tohwa University International Conference), Invited.
Liquid-glass transition in charge-stabilized colloidal dispersions
 


54. G. F. Wang and S. K. Lai, Phys. Rev. Lett. 82, 3645 (1999).
Liquid-glass transition phase boundary for monodisperse charge-stabilized colloids in the presence of an electrolyte
 


53. S. K. Lai, G. F. Wang, W. P. Peng and J. L. Wang, Physica. B 269, 183 (1999).
Rescaled mean spherical approximation for a concentrated charge-stabilized colloids
 


52. S. K. Lai, J. L Wang, and G. F. Wang, J. Chem. Phys. 110, 7433 (1999).
Static structure factor of a suspension of charge-stabilized colloids: application to liquid-glass transition phase diagram and to micellar solution
 


51. S. K. Lai and G. F. Wang, Phys. Rev. E 58, 3072 (1998).
Ergodic-nonergodic phase diagram for a concentrated charge-stabilized colloids: the rescaled mean spherical approximation
 


50. S. K. Lai, K. Horii, and M. Iwamatsu, Phys. Rev. E 58, 2227 (1998). 
Nonlocal pseudopotential calculation for the electron-ion correlation in liquid metals
 


49. H. C. Chen and S. K. Lai, Phys. Rev. E 56, 4381 (1997).
Anomalous structure of supercooled liquid gallium on the β-relaxation dynamics
 


48. S. K. Lai, W. J. Ma, W. van Megen, and I. K.Snook, Phys. Rev. E. 56, 766 (1997).
The liquid-glass transition phase-diagram for concentrated charge-stabilized colloids
 


47. W. J. Ma and S. K. Lai, Phys. Rev. E 55, 2026 (1997).
Role of orientation in the structure and dynamics of a supercooled molecular liquid
 


46. W. J. Ma and S. K. Lai, Chin. J. Phys. 35, 922 (1997).
Observation of a long-lived frozen state in the supercooled liquid dimers
 

45. W. J. Ma and S. K. Lai, Physica. B 233, 221 (1997).
Dynamics of supercooled Lennard-Jones system
 


44. S. K. Lai and Jyh-Nan Fang, Chin. J. Phys. 35, 253 (1997).
Entropy of liquid alkali metals studied by the correlation expansion method
 


43 S. K. Lai, J. Non-Cryst. Solids. 205-207, 342 (1996).
Spin susceptibility for liquid alkali metals
 


42. S. K. Lai and H. C. Chen, Phys. Rev. E 52, 5692 (1995).
Crossover integral-equation theory for the structure of liquid metals
 


41. S. K. Lai and S. Y. Chang, Phys. Rev. B 51, 12869 (1995).
Supercooled liquid dynamics for the charged-hard-sphere mode


40. S. K. Lai and H. C. Chen, J. Phys.: Condens. Matter. 7, 1499 (1995).
β-relaxation in a simple liquid metal
 


39. H. C. Chen and S. K. Lai, Mat. Sci. and Eng. A179/180, 261 (1994).
Dynamical and structural liquid-glass transition for metallic potassium
 


38. H. C. Chen and S. K. Lai, Phys. Rev. E 49, 982 (1994).
Application of the modified hypernetted-chain integral equation to supercooled and expanded liquid structures 

37. S. K.Lai, M. H. Chou, and H. C. Chen, Phys. Rev. E 48, 214 (1993).
Evidence of kinetic effects in liquid-glass transition
 


36. S. K. Lai and H. C. Chen, J. Phys.: Condens. Matter 5, 4325 (1993).
Structural and dynamical liquid-glass transition for metallic sodium
 


35. S.K. Lai and T. C. Huang, J. Non-cryst. Solids. 156-158, 412 (1993).
Thermodynamic self-consistency in the variational thermodynamic calculation for liquid metals
 


34. M. Iwamatsu and S. K. Lai, J. Phys.: Condens. Matter. 4, 6039 (1992).
Evidence of oscillatory density profile in liquid metal surface: asymptotic solution
 


33. K. W. Chen, H. C. Chen, and S. K. Lai, Physica. B 179, 125 (1992).
Molecular dynamics study of the structure of expanded liquid rubidium and caesium
 


32. H. C. Chen and S. K. Lai, Phys. Rev. A 45, 3831 (1992).
Structure and thermodynamics of liquid alkali metals in variational modified hypernetted-chain theory
 


31. S.K. Lai, (invited review paper) Proc. Natl. Sci. Counc. ROC(A) 15, 181 (1991).
Surface tension and interface structure of simple liquid metals
 


30. N. H.Lu and S. K. Lai, J. Phys.: Condens. Matter 3, 2175 (1991).
Theoretical study of the temperature dependences of electronic magnetic susceptibilties for liquid lithium and sodium
 

29. S. K. Lai, Wang Li, and M. P. Tosi, Phys. Rev. A 42, 7289 (1990).
Evaluation of liquid structure for potassium, zinc and cadmium
 


28. O. Akinlade, S. K. Lai, and M. P. Tosi, Physica. B 167, 61-70 (1990).
Thermodynamics and structure of liquid metals from the charged-hard-sphere reference fluid
 


27. S. K. Lai and M. S. Lin, J. Non-cryst. Solids. 117/118, 907 (1990).
Effects of quenching rate on liquid-glass transition
 


26. S. K. Lai, J. Non-cryst. Solids. 117/118, 513 (1990).
Thermodynamic calculation for liquid lithium using one-component-plasma system
 


25. S. K. Lai, O. Akinlade, and M. P. Tosi, Phys. Rev. A 41, 5482 (1990).
Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid
 


24. S. K. Lai, (invited paper)High Temp. Mat. and Processes 8, 241 (1989).
Temperature dependencies of the electronic magnetic susceptibilities of liquid Cs
 


23. S. K. Lai, Phys. Rev. A 38, 5707 (1988).
An accurate calculation of the Helmholtz free energy for simple liquid metals
 


22. S. K. Lai, M. L. Huang, and S. Wang, Chin. J. Phys. 26, 71 (1988).
Surface tensions for liquid polyvalent metals
 


21. S. K. Lai, J. Phys. F 18, 1673 (1988).
Monte carlo simulation of the liquid structure of Cs at different temperatures
 


20. S. K. Lai, J. Phys. F 18, 1663 (1988).
Structural study and its relation to liquid-glass transition
 


19. S. K. Lai, Mat. Sci. and Eng. 97, 187 (1988).
The effects of the softness of the interionic pair potential on the liquid-glass transition
 


18. S. K. Lai and S. Wang, Phys. Chem. 156, 451 (1988).
High-order correction and its effects on the surface tension of simple liquid metals
 


17. F. T. Lee, K. C. Lee, S. K. Lai, Y. S. Cheng, and T. M. Hsu, Sol. St. Comm. 63, 299 (1987).
Electric field enhancement near surface irregularities
 


16. S. K. Lai, J. Chem. Phys. 86, 2095 (1987).
Nonlocal pseudopotential calculation of the surface tension of simple liquid metals
 


15. S. K. Lai, S. Wang, and K. P. Wang, J. Chem. Phys. 87, 599 (1987).
A computer `experiment' on the microstructure of amorphous Cr
 


14. S. K. Lai, Chin. J. Phys. 24, 157 (1986).
A simultaneous study of the thermodynamic mixing and transport coefficient of Na-based liquid alloys
 


13. S. K. Lai, Phys. Stat. Sol. (b) 136, 685 (1986).
Density functional approach to the surface tension of simple liquid metals
 


12. S. K. Lai and T. S. Yih, Physica. B 141, 191 (1986).
Excess entropy and resistivity of Mg-based alloys
 

11. S. K. Lai, Phys. Rev. A 31, 3886 (1985).
Use of charged-hard-sphere reference system in variational thermodynamic calculation
 


10. S. K. Lai, M. Matsuura, and S. J. Wang, J. Phys. F 13, 2033 (1983).
Variational thermodynamic calculation for simple liquid metals and alkali alloys
 


9. M. Iwamatsu, S. K. Lai, R. A. Moore, and S. Wang, J. Phys. F 13, 1027 (1983).
Magnetic susceptibilities of liquid binary alloys
 


8. S. K. Lai and S. Wang, Phys. Stat. Sol. (b) 110, 331 (1982).
Calculation of the electronic density of states in disordered metallic systems
 


7. S. K. Lai, J. Mizia and S. Wang, Phys. Lett. 83A, 351 (1981).
On the electron density of states of disordered metals
 


6. S. K. Lai and S. Wang, Phys. Lett. 85A, 239 (1981).
On the anomalous temperature dependence of the electrical resistivity of liquid alloys
 


5. S. Wang and S. K. Lai, J. de Physique C 8, 535 (1980).
Electronic transport in liquid Lithium-lead alloys
 


4. S. Wang and S. K. Lai, J. Phys. F 10, 2717 (1980).
Structure and electrical resistivities of liquid binary alloys
 


3. S. Wang, S. K. Lai, and C. B. So, J. Phys. F 10, 445 (1980).
A self-consistent pseudopotential applied to transport coefficients of liquid alloys of alkali metals
 


2. S. Wang, S. K. Lai, C. B. So, and R. A. Moore, J. Phys. F 10, 99 (1980).
An effective pseudohamiltonian:Effects of spin-orbit Interaction on magnetic susceptibilities of liquid metals

1. S. K. Lai, S. Wang, and C.B. So, J. Phys. F 8, 883 (1978). 
Electronic Structure of Metals. VI. Magnetic Susceptibilities of simple liquid Metals