15th March, 2015

Chronological:


89. T.W. Yen and S.K. Lai, J. Chem. Phys. 142, 084313 (2015)
Use of density functional theory method to calculate structures of neutral carbon clusters
Cn (3 ≤ n ≤ 24) and study their variability of structural forms.
89.pdf

88. P.J. Hsu, S.A. Cheong and S.K. Lai, J. Chem. Phys. 140, 204905 (2014)
Precursory signatures of protein folding/unfolding: From time series correlation analysis to atomistic mechanisms.88.pdf
87. Po Jen Hsu, S.K. Lai and Arnaldo Rapallo, J. Chem. Phys. 140, 104910 (2014)
Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets.87.pdf
86. T.L. Yoon, T.L. Lim, T.K. Min, S.H. Hung, N. Jakse and S.K. Lai, J. Chem. Phys. 139, 204702 (2013)
Epitaxial growth of graphene on 6H-silicon carbide substrate by simulated annealing method.
86.pdf

85. Ping-Han Tang, Ten-Ming Wu and S.K. Lai, J. Phys.. Conf. Ser. 454, 012026 (2013)
Order parameter by instantaneous normal mode analysis for melting behaviour of cluster Ag17Cu2.
85.pdf

84. Ping-Han Tang, Ten-Ming Wu, P.J. Hsu and S.K. Lai , J. Chem. Phys. 137, 244304 (2012)
Melting behaviour of Ag14 cluster: An order parameter by instantaneous normal modes.
84.pdf

83. N. Jakse, R. Arifin and S.K. Lai, Condensed Matter Physics. 14. 43802 (2011)
Growth of graphene on 6H-SiC by molecular dynamics simulation.
83.pdf

82. Ping-Han Tang, Ten-Ming Wu, Tsung-Wen Yen, S.K. Lai and P.J. Hsu, J. Chem. Phys. 135, 094302(2011)
Comparative study of clusterAg17Cu2 by instantaneous normal mode analysis and by isothermal Brownian-type molecular dynamics simulation.
82.pdf
81. S.K. Lai, Y.T. Lim, P.J. Hsu, and Siew Ann Cheong, Compt. Phys. Commun. 182. 1013 (2011)
Dynamical Study of metallic clusters using the statistical method of time series clustering
81.pdf

80. S.K. Lai and X.H. Xiao, J. Chem. Phys. 132, 044905 (2010)
Phase diagram of colloid-rod system
80.pdf

79. Hao Lang Trinh, G.F. Wang, and S.K. Lai, J. Chem. Phys. 132, 024910 (2010)
Free energy landscapes and volumes of coexisting phases for a colloidal dispersion
79.pdf

78. Tsung-Wen Yen, P.J. Hsu, and S.K. Lai, e-J. Surf. Sci. Nanotech.7, 149-156 (2009).
Melting behavior of noble-metal-based bimetallic clusters
78.pdf

77. P.J. Hsu, J.S. Luo, S.K. Lai, J.F. Wax, and J-L Bretonnet, J. Chem. Phys. 129, 194302 (2008).
Melting scenario in metallic clusters
77.pdf

76. M. Iwamatsu and S.K. Lai, J. Non-Cryst. Solids. 353, 3698 (2007).
Lowest-energy structures of 13-atom binary clusters: Do icosahedral clusters exists in binary alloy?
76.pdf

75. K.L. Wu, S.K. Lai, and J.L. Bretonnet, J. Non-Cryst. Solids. 353, 3737 (2007).
Study of phase diagram domains
75.pdf


74. Tsung-Wen Yen, S.K. Lai, N. Jakse, and J.L. Bretonnet, Phys. Rev. B 75, 165420 (2007).
Thermal and geometric properties of alloy clusters studied with Brownian-type isothermal molecular
dynamics simulations
73.pdf

73. K.L. Wu, J.H. Wei, S.K. Lai, and Y. Okabe, J. Phys. Chem. B 111, 8946 (2007).
Energy and enthalpy distributions for a few physical systems
73.pdf

72. K.L. Wu and S. K. Lai, Colloids Surf. B: Biointerfaces. 56, 290 (2007).
Thermal response of a microgel system


71. P. J. Hsu and S. K. Lai, J. Chem. Phys. 124, 044711 (2006).
Structure of bimetallic clusters

70. L. Zhan, Jeff Z. Y. Chen, W. K. Liu, and S. K. Lai, J. Chem. Phys. 122, 244707(2005).
Synchronous multicanonical basin hopping methods and its application to cobalt nanoclusters


69. K. L. Wu, S. K. Lai, and W. D. Lin, Molecular Simulation. 31, 399 (2005).
Finite temperature properties for nanoclusters zinc


68. K. L. Wu and S. K.Lai, Langmuir 21, 3238 (2005).
Theoretical studies of the early stage kinetics of coagulation for a charged colloidal dispersion


67. G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004).
Domains of phase separation of a charged colloidal dispersion driven by electrolytes


66. S. K. Lai, W. D. Lin, K. L. Wu, W. H. Li, and K. C. Lee, J. Chem. Phys. 121, 1487 (2004).
Specific heat and Lindemann-like parameter of metallic clusters: mono- and polyvalent metals


65. S. K. Lai, C. Y. Kau, Y. W. Tang, and K. Y. Chan, Phys. Rev. E 69, 051203 (2004) .
Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores



64. K. L. Wu, C.C. Chang, and S. K. Lai, Phys. Chem. Chem. Phys. 6, 1369 (2004).
Phase diagram for an attractive square well plus a linear tail potential within the van der Waals-like theory


63. L. Zhan, B. Piwowar, W.K. Liu, P. J. Hsu, S.K. Lai, and Jeff Z. Y. Chen, J. Chem. Phys. 120, 5536 (2004).
Multi-canonical basin-hopping: a new global optimization method for complex systems


62. W. H. Li, S. Y. Wu, C. C. Yang, F. C. Tsao, S. K. Lai, and K. C. Lee, Synthetic Metal. 135-136, 811 (2003).
Quantum thermal contraction of Au nanoparticles


61. S.K. Lai, P.J. Hsu, K. L. Wu, W. K. Liu, and M. Iwamatsu, J. Chem. Phys. 117, 10715 (2002).
Structures of metallic clusters: mono- and polyvalent metals


60. W. H. Li, S. Y. Wu , C. C. Yang, S. K. Lai, K. C. Lee, H. L. Huang, and H. D. Yang, Phys. Rev. Lett. 89, 135504 (2002).
Thermal contraction of Au nanoparticles


59. S. K. Lai and K. L. Wu, Phys. Rev. E 66, 041403 (2002).
Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion


58. G. F. Wang and S. K. Lai, J. Non-Cryst. Solids. 307-310, 812 (2002).
Liquid-glass re-entrant behavior in a charge-stabilized colloidal dispersion


57. G. F. Wang and S. K. Lai, J. Non-Cryst. Solids. 312-314, 236 (2002).
Phase diagram for an attractive triangular potential within van der Waals like theory


56. S. K. Lai,W. P. Peng, and G. F. Wang, Phys. Rev. E 63, 041511 (2001).
Realistic calculation of the low- and high-density liquid phase separation in a charged colloidal dispersion


55. S. K. Lai, G. F. Wang, and W. P. Peng, AIP Conference Proceedings -- June 22, 2000 -- Volume 519, pp. 99-110 (STATISTICAL PHYSICS: Third Tohwa University International Conference), Invited.
Liquid-glass transition in charge-stabilized colloidal dispersions


54. G. F. Wang and S. K. Lai, Phys. Rev. Lett. 82, 3645 (1999).
Liquid-glass transition phase boundary for monodisperse charge-stabilized colloids in the presence of an electrolyte


53. S. K. Lai, G. F. Wang, W. P. Peng and J. L. Wang, Physica. B 269, 183 (1999).
Rescaled mean spherical approximation for a concentrated charge-stabilized colloids


52. S. K. Lai, J. L Wang, and G. F. Wang, J. Chem. Phys. 110, 7433 (1999).
Static structure factor of a suspension of charge-stabilized colloids: application to liquid-glass transition phase diagram and to micellar solution


51. S. K. Lai and G. F. Wang, Phys. Rev. E 58, 3072 (1998).
Ergodic-nonergodic phase diagram for a concentrated charge-stabilized colloids: the rescaled mean spherical approximation


50. S. K. Lai, K. Horii, and M. Iwamatsu, Phys. Rev. E 58, 2227 (1998).
Nonlocal pseudopotential calculation for the electron-ion correlation in liquid metals


49. H. C. Chen and S. K. Lai, Phys. Rev. E 56, 4381 (1997).
Anomalous structure of supercooled liquid gallium on the β-relaxation dynamics


48. S. K. Lai, W. J. Ma, W. van Megen, and I. K.Snook, Phys. Rev. E. 56, 766 (1997).
The liquid-glass transition phase-diagram for concentrated charge-stabilized colloids


47. W. J. Ma and S. K. Lai, Phys. Rev. E 55, 2026 (1997).
Role of orientation in the structure and dynamics of a supercooled molecular liquid


46. W. J. Ma and S. K. Lai, Chin. J. Phys. 35, 922 (1997).
Observation of a long-lived frozen state in the supercooled liquid dimers


45. W. J. Ma and S. K. Lai, Physica. B 233, 221 (1997).
Dynamics of supercooled Lennard-Jones system


44. S. K. Lai and Jyh-Nan Fang, Chin. J. Phys. 35, 253 (1997).
Entropy of liquid alkali metals studied by the correlation expansion method


43 S. K. Lai, J. Non-Cryst. Solids. 205-207, 342 (1996).
Spin susceptibility for liquid alkali metals


42. S. K. Lai and H. C. Chen, Phys. Rev. E 52, 5692 (1995).
Crossover integral-equation theory for the structure of liquid metals


41. S. K. Lai and S. Y. Chang, Phys. Rev. B 51, 12869 (1995).
Supercooled liquid dynamics for the charged-hard-sphere mode


40. S. K. Lai and H. C. Chen, J. Phys.: Condens. Matter. 7, 1499 (1995).
β-relaxation in a simple liquid metal


39. H. C. Chen and S. K. Lai, Mat. Sci. and Eng. A179/180, 261 (1994).
Dynamical and structural liquid-glass transition for metallic potassium


38. H. C. Chen and S. K. Lai, Phys. Rev. E 49, 982 (1994).
Application of the modified hypernetted-chain integral equation to supercooled and expanded liquid structures

37. S. K.Lai, M. H. Chou, and H. C. Chen, Phys. Rev. E 48, 214 (1993).
Evidence of kinetic effects in liquid-glass transition


36. S. K. Lai and H. C. Chen, J. Phys.: Condens. Matter 5, 4325 (1993).
Structural and dynamical liquid-glass transition for metallic sodium


35. S.K. Lai and T. C. Huang, J. Non-cryst. Solids. 156-158, 412 (1993).
Thermodynamic self-consistency in the variational thermodynamic calculation for liquid metals


34. M. Iwamatsu and S. K. Lai, J. Phys.: Condens. Matter. 4, 6039 (1992).
Evidence of oscillatory density profile in liquid metal surface: asymptotic solution


33. K. W. Chen, H. C. Chen, and S. K. Lai, Physica. B 179, 125 (1992).
Molecular dynamics study of the structure of expanded liquid rubidium and caesium


32. H. C. Chen and S. K. Lai, Phys. Rev. A 45, 3831 (1992).
Structure and thermodynamics of liquid alkali metals in variational modified hypernetted-chain theory


31. S.K. Lai, (invited review paper) Proc. Natl. Sci. Counc. ROC(A) 15, 181 (1991).
Surface tension and interface structure of simple liquid metals


30. N. H.Lu and S. K. Lai, J. Phys.: Condens. Matter 3, 2175 (1991).
Theoretical study of the temperature dependences of electronic magnetic susceptibilties for liquid lithium and sodium


29. S. K. Lai, Wang Li, and M. P. Tosi, Phys. Rev. A 42, 7289 (1990).
Evaluation of liquid structure for potassium, zinc and cadmium


28. O. Akinlade, S. K. Lai, and M. P. Tosi, Physica. B 167, 61-70 (1990).
Thermodynamics and structure of liquid metals from the charged-hard-sphere reference fluid


27. S. K. Lai and M. S. Lin, J. Non-cryst. Solids. 117/118, 907 (1990).
Effects of quenching rate on liquid-glass transition


26. S. K. Lai, J. Non-cryst. Solids. 117/118, 513 (1990).
Thermodynamic calculation for liquid lithium using one-component-plasma system


25. S. K. Lai, O. Akinlade, and M. P. Tosi, Phys. Rev. A 41, 5482 (1990).
Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid


24. S. K. Lai, (invited paper)High Temp. Mat. and Processes 8, 241 (1989).
Temperature dependencies of the electronic magnetic susceptibilities of liquid Cs


23. S. K. Lai, Phys. Rev. A 38, 5707 (1988).
An accurate calculation of the Helmholtz free energy for simple liquid metals


22. S. K. Lai, M. L. Huang, and S. Wang, Chin. J. Phys. 26, 71 (1988).
Surface tensions for liquid polyvalent metals


21. S. K. Lai, J. Phys. F 18, 1673 (1988).
Monte carlo simulation of the liquid structure of Cs at different temperatures


20. S. K. Lai, J. Phys. F 18, 1663 (1988).
Structural study and its relation to liquid-glass transition


19. S. K. Lai, Mat. Sci. and Eng. 97, 187 (1988).
The effects of the softness of the interionic pair potential on the liquid-glass transition


18. S. K. Lai and S. Wang, Phys. Chem. 156, 451 (1988).
High-order correction and its effects on the surface tension of simple liquid metals


17. F. T. Lee, K. C. Lee, S. K. Lai, Y. S. Cheng, and T. M. Hsu, Sol. St. Comm. 63, 299 (1987).
Electric field enhancement near surface irregularities


16. S. K. Lai, J. Chem. Phys. 86, 2095 (1987).
Nonlocal pseudopotential calculation of the surface tension of simple liquid metals


15. S. K. Lai, S. Wang, and K. P. Wang, J. Chem. Phys. 87, 599 (1987).
A computer `experiment' on the microstructure of amorphous Cr


14. S. K. Lai, Chin. J. Phys. 24, 157 (1986).
A simultaneous study of the thermodynamic mixing and transport coefficient of Na-based liquid alloys


13. S. K. Lai, Phys. Stat. Sol. (b) 136, 685 (1986).
Density functional approach to the surface tension of simple liquid metals


12. S. K. Lai and T. S. Yih, Physica. B 141, 191 (1986).
Excess entropy and resistivity of Mg-based alloys


11. S. K. Lai, Phys. Rev. A 31, 3886 (1985).
Use of charged-hard-sphere reference system in variational thermodynamic calculation


10. S. K. Lai, M. Matsuura, and S. J. Wang, J. Phys. F 13, 2033 (1983).
Variational thermodynamic calculation for simple liquid metals and alkali alloys


9. M. Iwamatsu, S. K. Lai, R. A. Moore, and S. Wang, J. Phys. F 13, 1027 (1983).
Magnetic susceptibilities of liquid binary alloys


8. S. K. Lai and S. Wang, Phys. Stat. Sol. (b) 110, 331 (1982).
Calculation of the electronic density of states in disordered metallic systems


7. S. K. Lai, J. Mizia and S. Wang, Phys. Lett. 83A, 351 (1981).
On the electron density of states of disordered metals


6. S. K. Lai and S. Wang, Phys. Lett. 85A, 239 (1981).
On the anomalous temperature dependence of the electrical resistivity of liquid alloys


5. S. Wang and S. K. Lai, J. de Physique C 8, 535 (1980).
Electronic transport in liquid Lithium-lead alloys


4. S. Wang and S. K. Lai, J. Phys. F 10, 2717 (1980).
Structure and electrical resistivities of liquid binary alloys


3. S. Wang, S. K. Lai, and C. B. So, J. Phys. F 10, 445 (1980).
A self-consistent pseudopotential applied to transport coefficients of liquid alloys of alkali metals


2. S. Wang, S. K. Lai, C. B. So, and R. A. Moore, J. Phys. F 10, 99 (1980).
An effective pseudohamiltonian:Effects of spin-orbit Interaction on magnetic susceptibilities of liquid metals

1. S. K. Lai, S. Wang, and C.B. So, J. Phys. F 8, 883 (1978).
Electronic Structure of Metals. VI. Magnetic Susceptibilities of simple liquid Metals


Recommended Reader:
1.Acrobat Reader 6.0 or higher(Windows/Linux/Mac)
2.Foxit PDF Reader 1.0 or higher(Windows/Linux)
3.kpdf (Linux)
4.xpdf (Linux)