April 21, 2008


Chronological:

87.  Po Jen Hsu, S. K. Lai, and Arnaldo Rapallo J. Chem. Phys. 140,  104910 (2014)
Peptide dynamics by molecular dynamics simulation and diffusion theory
method with improved basis sets

87.pdf


86.  T. L. Yoon, T. L. Lim, T. K. Min, S. H. Hung, N. Jakse, S.K. Lai, J. Chem. Phys. 139,  204702 (2013)
Epitaxial growth of graphene on 6H-silicon carbide substrate by simulated
annealing method

86.pdf


85.  Ping-Han Tang, Ten-Ming Wu, S.K. Lai, J. Phys.: Conf. Ser. 454, 012026 (2013)
Order parameter by instantaneous normal mode analysis for melting behaviour of cluster 
Ag17Cu2

85.pdf


84.  Ping-Han Tang, Ten-Ming Wu, P.J.Hsu, S.K. Lai, J. Chem. Phys. 137, 244304 (2012)
Melting behavior of Ag14 cluster: An order parameter by instantaneous normal modes

84.pdf


83.  N. Jakse,  R. Arifin , S.K. Lai, Condensed Matter Physics. 14, 43802 (2011)
Growth of graphene on 6H-SiC by molecular dynamics simulation

83.pdf


82. Ping-Han Tang, Ten-Ming Wu, Tsung-Wen Yen, S.K. Lai and P.J. Hsu, J. Chem. Phys. 135, 094302(2011)
Comparative study of cluster 
Ag17Cu2 by instantaneous normal mode analysis and by isothermal Brownian-type molecular dynamics simulation

82.pdf


81. S.K. Lai, Y. T. Lin, P. J. Hsu, and Siew Ann Cheong, Compt. Phys. Commun. 1821013 (2011) 
Dynamical study of metallic clusters using the statistical method of time series clustering

81.pdf


80. S.K. Lai and X.H. Xiao, J. Chem. Phys. 132, 044905 (2010)
Phase diagram of colloid-rod system

80.pdf


79. Hao Lang Trinh, G.F. Wang, and S.K. Lai, J. Chem. Phys. 132, 024910 (2010)
Free energy landscapes and volumes of coexisting phases for a colloidal dispersion

79.pdf


78. Tsung-Wen Yen, P.J. Hsu, and S.K. Lai, e-J. Surf. Sci. Nanotech. 7, 149-156 (2009).
Melting behavior of noble-metal-based bimetallic clusters

78.pdf


77. P.J. Hsu, J.S. Luo, S.K. Lai, J.F. Wax, and J-L Bretonnet, J. Chem. Phys. 129, 194302 (2008).
Melting scenario in metallic clusters

77.pdf


76. M. Iwamatsu and S.K. Lai, J. Non-Cryst. Solids. 353, 3698 (2007).
Lowest-energy structures of 13-atom binary clusters: Do icosahedral clusters exists in binary alloy?

76.pdf


75. K.L. Wu, S.K. Lai, and J.L. Bretonnet, J. Non-Cryst. Solids. 353, 3737 (2007).
Study of phase diagram domains

75.pdf


74. Tsung-Wen Yen, S.K. Lai, N. Jakse, and J.L. Bretonnet, Phys. Rev. B 75, 165420 (2007).
Thermal and geometric properties of alloy clusters studied with Brownian-type isothermal molecular

dynamics simulations

73.pdf


73. K.L. Wu, J.H. Wei, S.K. Lai, and Y. Okabe, J. Phys. Chem. B 111, 8946 (2007).
Energy and enthalpy distributions for afew physical systems

73.pdf


72. K.L. Wu and S. K. Lai, Colloids Surf. B: Biointerfaces. 56, 290 (2007).
Thermal response of a microgel system


71. P. J. Hsu and S. K. Lai, J. Chem. Phys. 124, 044711 (2006).
Structure of bimetallic clusters



70. L. Zhan, Jeff Z. Y. Chen, W. K. Liu, and S. K. Lai, J. Chem. Phys. 122, 244707 (2005).
Synchronous multicanonical basin hopping methods and its application to cobalt nanoclusters



69. K. L. Wu, S. K. Lai, and W. D. Lin, Molecular Simulation. 31, 399 (2005).
Finite temperature properties for nanoclusters zinc



68. K. L. Wu and S. K.Lai, Langmuir 21, 3238 (2005).
Theoretical studies of the early stage kinetics of coagulation for a charged colloidal dispersion



67. G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004).
Domains of phase separation of a charged colloidal dispersion driven by electrolytes



66. S. K. Lai, W. D. Lin, K. L. Wu, W. H. Li, and K. C. Lee, J. Chem. Phys. 121, 1487 (2004).
Specific heat and Lindemann-like parameter of metallic clusters: mono- and polyvalent metals



65. S. K. Lai, C. Y. Kau, Y. W. Tang, and K. Y. Chan, Phys. Rev. E 69, 051203 (2004) .
Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores



64. K. L. Wu, C.C. Chang, and S. K. Lai, Phys. Chem. Chem. Phys. 6, 1369 (2004).
Phase diagram for an attractive square well plus a linear tail potential within the van der Waals-like theory



63. L. Zhan, B. Piwowar, W.K. Liu, P. J. Hsu, S.K. Lai, and Jeff Z. Y. Chen, J. Chem. Phys. 120, 5536 (2004).
Multi-canonical basin-hopping: a new global optimization method for complex systems



62. W. H. Li, S. Y. Wu, C. C. Yang, F. C. Tsao, S. K. Lai, and K. C. Lee, Synthetic Metal. 135-136, 811 (2003).
Quantum thermal contraction of Au nanoparticles



61. S.K. Lai, P.J. Hsu, K. L. Wu, W. K. Liu, and M. Iwamatsu, J. Chem. Phys. 117, 10715 (2002).
Structures of metallic clusters: mono- and polyvalent metals



60. W. H. Li, S. Y. Wu , C. C. Yang, S. K. Lai, K. C. Lee, H. L. Huang, and H. D. Yang, Phys. Rev. Lett. 89, 135504 (2002).
Thermal contraction of Au nanoparticles



59. S. K. Lai and K. L. Wu, Phys. Rev. E 66, 041403 (2002).
Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion



58. G. F. Wang and S. K. Lai, J. Non-Cryst. Solids. 307-310, 812 (2002).
Liquid-glass re-entrant behavior in a charge-stabilized colloidal dispersion



57. G. F. Wang and S. K. Lai, J. Non-Cryst. Solids. 312-314, 236 (2002).
Phase diagram for an attractive triangular potential within van der Waals like theory



56. S. K. Lai,W. P. Peng, and G. F. Wang, Phys. Rev. E 63, 041511 (2001).
Realistic calculation of the low- and high-density liquid phase separation in a charged colloidal dispersion



55. S. K. Lai, G. F. Wang, and W. P. Peng, AIP Conference Proceedings -- June 22, 2000 -- Volume 519, pp. 99-110 (STATISTICAL PHYSICS: Third Tohwa University International Conference), Invited.
Liquid-glass transition in charge-stabilized colloidal dispersions 



54. G. F. Wang and S. K. Lai, Phys. Rev. Lett. 82, 3645 (1999).
Liquid-glass transition phase boundary for monodisperse charge-stabilized colloids in the presence of an electrolyte



53. S. K. Lai, G. F. Wang, W. P. Peng and J. L. Wang, Physica. B 269, 183 (1999).
Rescaled mean spherical approximation for a concentrated charge-stabilized colloids



52. S. K. Lai, J. L Wang, and G. F. Wang, J. Chem. Phys. 110, 7433 (1999).
Static structure factor of a suspension of charge-stabilized colloids: application to liquid-glass transition phase diagram and to micellar solution 



51. S. K. Lai and G. F. Wang, Phys. Rev. E 58, 3072 (1998).
Ergodic-nonergodic phase diagram for a concentrated charge-stabilized colloids: the rescaled mean spherical approximation



50. S. K. Lai, K. Horii, and M. Iwamatsu, Phys. Rev. E 58, 2227 (1998). 
Nonlocal pseudopotential calculation for the electron-ion correlation in liquid metals



49. H. C. Chen and S. K. Lai, Phys. Rev. E 56, 4381 (1997).
Anomalous structure of supercooled liquid gallium on the β-relaxation dynamics



48. S. K. Lai, W. J. Ma, W. van Megen, and I. K.Snook, Phys. Rev. E. 56, 766 (1997).
The liquid-glass transition phase-diagram for concentrated charge-stabilized colloids



47. W. J. Ma and S. K. Lai, Phys. Rev. E 55, 2026 (1997).
Role of orientation in the structure and dynamics of a supercooled molecular liquid



46. W. J. Ma and S. K. Lai, Chin. J. Phys. 35, 922 (1997).
Observation of a long-lived frozen state in the supercooled liquid dimers



45. W. J. Ma and S. K. Lai, Physica. B 233, 221 (1997).
Dynamics of supercooled Lennard-Jones system



44. S. K. Lai and Jyh-Nan Fang, Chin. J. Phys. 35, 253 (1997).
Entropy of liquid alkali metals studied by the correlation expansion method



43 S. K. Lai, J. Non-Cryst. Solids. 205-207, 342 (1996).
Spin susceptibility for liquid alkali metals



42. S. K. Lai and H. C. Chen, Phys. Rev. E 52, 5692 (1995).
Crossover integral-equation theory for the structure of liquid metals 



41. S. K. Lai and S. Y. Chang, Phys. Rev. B 51, 12869 (1995). 
Supercooled liquid dynamics for the charged-hard-sphere model



40. S. K. Lai and H. C. Chen, J. Phys.: Condens. Matter. 7, 1499 (1995).
β-relaxation in a simple liquid metal



39. H. C. Chen and S. K. Lai, Mat. Sci. and Eng. A179/180, 261 (1994).
Dynamical and structural liquid-glass transition for metallic potassium 



38. H. C. Chen and S. K. Lai, Phys. Rev. E 49, 982 (1994).
Application of the modified hypernetted-chain integral equation to supercooled and expanded liquid structures



37. S. K.Lai, M. H. Chou, and H. C. Chen, Phys. Rev. E 48, 214 (1993).
Evidence of kinetic effects in liquid-glass transition



36. S. K. Lai and H. C. Chen, J. Phys.: Condens. Matter 5, 4325 (1993).
Structural and dynamical liquid-glass transition for metallic sodium 



35. S.K. Lai and T. C. Huang, J. Non-cryst. Solids. 156-158, 412 (1993).
Thermodynamic self-consistency in the variational thermodynamic calculation for liquid metals



34. M. Iwamatsu and S. K. Lai, J. Phys.: Condens. Matter. 4, 6039 (1992).
Evidence of oscillatory density profile in liquid metal surface: asymptotic solution



33. K. W. Chen, H. C. Chen, and S. K. Lai, Physica. B 179, 125 (1992).
Molecular dynamics study of the structure of expanded liquid rubidium and caesium



32. H. C. Chen and S. K. Lai, Phys. Rev. A 45, 3831 (1992).
Structure and thermodynamics of liquid alkali metals in variational modified hypernetted-chain theory



31. S.K. Lai, (invited review paper) Proc. Natl. Sci. Counc. ROC(A) 15, 181 (1991).
Surface tension and interface structure of simple liquid metals



30. N. H.Lu and S. K. Lai, J. Phys.: Condens. Matter 3, 2175 (1991).
Theoretical study of the temperature dependences of electronic magnetic susceptibilties for liquid lithium and sodium



29. S. K. Lai, Wang Li, and M. P. Tosi, Phys. Rev. A 42, 7289 (1990).
Evaluation of liquid structure for potassium, zinc and cadmium



28. O. Akinlade, S. K. Lai, and M. P. Tosi, Physica. B 167, 61-70 (1990).
Thermodynamics and structure of liquid metals from the charged-hard-sphere reference fluid



27. S. K. Lai and M. S. Lin, J. Non-cryst. Solids. 117/118, 907 (1990).
Effects of quenching rate on liquid-glass transition



26. S. K. Lai, J. Non-cryst. Solids. 117/118, 513 (1990).
Thermodynamic calculation for liquid lithium using one-component-plasma system



25. S. K. Lai, O. Akinlade, and M. P. Tosi, Phys. Rev. A 41, 5482 (1990).
Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid



24. S. K. Lai, (invited paper)High Temp. Mat. and Processes 8, 241 (1989).
Temperature dependences of the electronic magnetic susceptibilities of liquid Cs



23. S. K. Lai, Phys. Rev. A 38, 5707 (1988).
An accurate calculation of the helmholtz free energy for simple liquid metals 



22. S. K. Lai, M. L. Huang, and S. Wang, Chin. J. Phys. 26, 71 (1988).
Surface tensions for liquid polyvalent metals



21. S. K. Lai, J. Phys. F 18, 1673 (1988).
Monte carlo simulation of the liquid structure of Cs at different temperatures



20. S. K. Lai, J. Phys. F 18, 1663 (1988).
Structural study and its relation to liquid-glass transition 



19. S. K. Lai, Mat. Sci. and Eng. 97, 187 (1988).
The effects of the softness of the interionic pair potential on the liquid-glass transition



18. S. K. Lai and S. Wang, Phys. Chem. 156, 451 (1988).
High-order correction and its effects on the surface tension of simple liquid metals



17. F. T. Lee, K. C. Lee, S. K. Lai, Y. S. Cheng, and T. M. Hsu, Sol. St. Comm. 63, 299 (1987).
Electric field enhancement near surface irregularities



16. S. K. Lai, J. Chem. Phys. 86, 2095 (1987).
Nonlocal pseudopotential calculation of the surface tension of simple liquid metals



15. S. K. Lai, S. Wang, and K. P. Wang, J. Chem. Phys. 87, 599 (1987).
A computer `experiment' on the microstructure of amorphous Cr



14. S. K. Lai, Chin. J. Phys. 24, 157 (1986).
A simultaneous study of the thermodynamic mixing and transport coefficient of Na-based liquid alloys



13. S. K. Lai, Phys. Stat. Sol. (b) 136, 685 (1986).
Density functional approach to the surface tension of simple liquid metals



12. S. K. Lai and T. S. Yih, Physica. B 141, 191 (1986).
Excess entropy and resistivity of Mg-based alloys



11. S. K. Lai, Phys. Rev. A 31, 3886 (1985).
Use of charged-hard-sphere reference system in variational thermodynamic calculation



10. S. K. Lai, M. Matsuura, and S. J. Wang, J. Phys. F 13, 2033 (1983).
Variational thermodynamic calculation for simple liquid metals and alkali alloys



9. M. Iwamatsu, S. K. Lai, R. A. Moore, and S. Wang, J. Phys. F 13, 1027 (1983).
Magnetic susceptibilities of liquid binary alloys



8. S. K. Lai and S. Wang, Phys. Stat. Sol. (b) 110, 331 (1982).
Calculation of the electronic density of states in disordered metallic systems



7. S. K. Lai, J. Mizia and S. Wang, Phys. Lett. 83A, 351 (1981).
On the electron density of states of disordered metals



6. S. K. Lai and S. Wang, Phys. Lett. 85A, 239 (1981).
On the anomalous temperature dependence of the electrical resistivity of liquid alloys



5. S. Wang and S. K. Lai, J. de Physique C8, 535 (1980).
Electronic transport in liquid Lithium-lead alloys



4. S. Wang and S. K. Lai, J. Phys. F 10, 2717 (1980).
Structure and electrical resistivities of liquid binary alloys



3. S. Wang, S. K. Lai, and C. B. So, J. Phys. F 10, 445 (1980).
A self-consistent pseudopotential applied to transport coefficients of liquid alloys of alkali metals



2. S. Wang, S. K. Lai, C. B. So, and R. A. Moore, J. Phys. F 10, 99 (1980).
An effective pseudohamiltonian:Effects of spin-orbit Interaction on magnetic susceptibilities of liquid metals



1. S. K. Lai, S. Wang, and C.B. So, J. Phys. F 8, 883 (1978). 
Electronic Structure of Metals. VI. Magnetic Susceptibilities of simple liquid Metals



Recommended Reader:
1.Acrobat Reader 6.0 or higher(Windows/Linux/Mac)
2.Foxit PDF Reader 1.0 or higher(Windows/Linux)
3.kpdf (Linux)
4.xpdf (Linux)