Department of Physics, National Central University

Colloquium

Recent progress and future perspective of electron cryomicroscopy for structural life sciences

Prof. Keiichi Namba (難波啓一)

Professor Emeritus, Osaka University Specially Appointed Professor, Graduate School of Frontier Biosciences, Osaka University

Date: 2025/05/13(Tue)

Venue: \$4-625

Time: 14:00-16:00

Abstract:

CryoEM image analysis has become a powerful tool for life/medical sciences and drug design. Single particle image analysis can easily determine a macromolecular structure beyond 2 Å resolution from a few ml drop of sample solution within a few days. With a transmission electron cryomicroscope (cryoTEM) we have been developing with JEOL over the last decade (CRYO ARM), we solved the structure of apoferritin at 1.53 Å from about 900 images collected in one day in early 2019 using a GATAN K2 camera. With a new TEM control software that we developed for multi-hole imaging and a GATAN K3 camera, nearly 30,000 images can be collected. We determined the structure of apoferritin at 1.29 Å from about 7,500 images collected over 15 hours in late 2020, but this data collection could be completed in a few hours now. We also developed an epoxidized graphene grid (EG-grid) to solve difficult problems in cryo-grid preparation, such as denaturation and preferred orientation that occur at the air-water interface. We were able to solve the structure of GroEL at 1.99 Å from only about 500 images collected within 1 hour. Successful use of the EG-grid with advanced cryoTEM allows high-throughput data collection without sacrificing high resolution. Recent development of high-resolution cellular tomography workflow with a combination of cryoFIB-SEM and cryoTEM and in-situ structural analysis of macromolecular complexes by subtomogram averaging is also becoming a powerful tool that allows visualization of intracellular localization and interaction networks of macromolecules for us to deeply investigate cellular physiology in many biologically important contexts. I will discuss future potential of cryoEM technology for life sciences as well as drug discovery.