Proton Stability in Low-Scale Extra-Dimensional Grand Unified Theories

Mitsuru Kakizaki (University of Toyama)

1. Motivation

2. Localizing Fermions in Extra Dimensions (Review)

3. Localizing X-bosons and Proton Stability

4. Summary
1. Motivation

- Discovery of a Higgs boson at the CERN LHC
 - The Standard Model (SM) is established as a low-energy effective theory below $O(100)$ GeV

- Theoretical problems of the SM include
 - Unexplained structure of the SM gauge bosons and fermions
 - Quantization of the electric charges
 - Fermion mass hierarchy

We need a more fundamental theory

- Grand unified theories (GUTs)
 - Unification of gauge groups: $SU(3)_C \times SU(2)_L \times U(1)_Y \subset G$
 - Unification of quarks and leptons: $(Q,U^C,E^C) = 10 \quad (D^C,L) = 5^*$

Prediction: Proton is not absolutely stable
This talk

- **Proton Decay Constraint**
 \[\tau_p(p \rightarrow e^+\pi^0) > 8.2 \times 10^{33} \text{ yr} \]
 [Super-Kamiokande, 2009]
 \[M_X / g_X \geq 10^{15} \text{ GeV} \]

- **Ordinary GUTs:**
 \[g_X \sim 1 \quad M_X \sim 10^{14-16} \text{ GeV} \]
 Far beyond reach of collider experiments

- **This work**
 - New mechanism to localize X-bosons in extra dimensions
 - Localizing the X-bosons and fermions at different locations
 Proton decay is extremely suppressed

The GUT scale can be \[M_X \sim O(10) \text{ TeV} \]
2. Localizing fermions in extra dimensions

- **Idea:**
 Chiral fermions are localized due to a kink in extra dimensions

 [Jackiw, Rebbi, 1976; Rubakov, Shaposhnikov, 1983; Arkani-Hamed, Schmaltz, 2000]

- **Z_2-invariant real scalar theory in 5D space-time $x^M = (x^\mu, y)$:**

 $$ S = \int d^4x \, dy \left[\frac{1}{2} (\partial_\mu \phi)^2 - \frac{1}{2} (\partial_y \phi)^2 - V(\phi) \right] $$

 $V(\phi)$: Double well

 Classical domain wall solution:

 $$ \langle \phi \rangle (y \to \pm \infty) = \pm v $$

 Around the origin: $\langle \phi \rangle \propto y$

- **Translational invariance along the extra dimension is broken**
Profile of a fermion wave function

- 5D Fermion Ψ in the domain wall background $\langle \phi \rangle = 2\mu^2 y$:

$$S = \int d^4x dy \bar{\Psi} \left[i\gamma^\mu \partial_\mu - \gamma^5 \partial_y + (\phi + m) \right] \Psi$$

Left chiral zero mode in 4D:

$$\Psi^0 \sim \sqrt{\mu} \exp[-\mu^2(y - l)^2] \psi_L(x), \quad l \equiv -\frac{m}{2\mu^2}$$

- The zero mode wave function Ψ^0 is localized at the zero of $\phi + m$ with a Gaussian profile
- The right-handed zero mode is killed
3. Localizing X-bosons and Proton Stability

- Idea:
 Kink background of an adjoint Higgs
 Different profiles in the same GUT multiplets

- Z_2-invariant real $\Sigma(24)$ terms in 5D SU(5) GUT Lagrangian:

$$\mathcal{L}_5 = \text{tr}(\partial^M \Sigma)(\partial_M \Sigma) + \frac{M_5^2}{2} \text{tr} \Sigma^2 - \frac{a}{4} (\text{tr} \Sigma^2)^2 - \frac{b}{2} \text{tr} \Sigma^4$$

- Classical domain wall solution:

$$\langle \Sigma \rangle = \begin{cases}
 V \text{diag}(2,2,-2,-3), & x^5 \to \infty, \\
 -V \text{diag}(2,2,-2,-3), & x^5 \to -\infty,
\end{cases}$$

- Translational invariance along the extra dimension and SU(5) are simultaneously broken

- GUT relations are easily violated in the 4D viewpoint
Localizing massive X-bosons

- 5D Equations of motion for the SM gauge bosons:

 Wave equation \[\text{Wave functions have flat profiles} \]

- 5D Equations of motion for the X-bosons:

 \[
 -\partial_5^2 + M_X^2(x^5)f_X^{(n)}(x^5) = M_X^{(n)}f_X^{(n)}(x^5)
 \]

 \[
 f_X^{(n)}(\xi) \sim (1 - \xi^2)^{(c-n)/2}F_1\left(-n,2c-n+1;c-n+1;\frac{1-\xi}{2}\right)
 \]

 \[
 n = 0, 1, 2, \ldots < c,
 \]

 \[
 \xi = \tanh(mx^5),\ c = \frac{1}{2}\left(\sqrt{1 + \frac{100g_S^2V^2}{m^2}} - 1\right) > 0
 \]

 \[
 M_X^{(n)} = [(2n+1)c - n^2]m^2
 \]

- Zero modes of the X-bosons:

 \[
 f_X^{(0)}(x^5) = \frac{m^{1/2}}{\pi^{1/4}}\sqrt{\frac{\Gamma(c+1/2)}{\Gamma(c)}}\frac{1}{\cosh^c(mx^5)}
 \]

 \[
 M_X^{(0)} = cm^2.
 \]

X-bosons are localized with exponential profiles [c.f. Hamada,Kobayashi,2012]
Proton Stability

- Profiles:

![Graph showing the separation between X-bosons and fermions]

4D $X^{(0)}$-coupling:

$$g_X^{(0)} = g_5 \int_\infty^\infty dx^5 \left[f_L^{(0)}(x^5) \right]^2 f_X^{(0)}(x^5)$$

- Separation between the X-bosons and fermions. g_X is exponentially suppressed.

- Proton stability.

- No symmetry is imposed to suppress the coupling g_X.

[c.f. Hamada, Kobayashi, PTP128, 903 (2012)]
GUT Scale

- Effective X-boson mass:

 \[\frac{M_X^{(0)}}{g_X^{(0)}} > 10^{15} \text{GeV} \]

- Contributions from higher KK X-bosons are also suppressed by a bit larger separation

- Non-observation of exotic colored particles

 Inverse of the size of the extra dimension: \(L^{-1} \geq 1\text{TeV} \)

- To suppress proton decay: \(\frac{4}{m} < l < L \)

 \[M_X^{(0)} > 10\text{TeV} \]

- The effects of the X-bosons may be probed at experiments

- \(g_X^{(0)} \) is achieved even with a small X-boson mass

November 24, 2013
Mitsuru KAKIZAKI
We proposed a new mechanism to localize X-bosons in extra dimensions.

By separating the X-bosons and fermions, proton decay can be extremely suppressed without imposing symmetries.

The GUT scale can be as low as $O(10)\text{TeV}$.

Future direction: Supersymmetrizing the X-boson localization mechanism.
Backup slides
July 4, 2012:
A new particle was discovered at CERN LHC

- Mass: \(\cong 125 \text{GeV} \)
- Couplings: consistent with the SM Higgs boson ones

The SM is established as a low-energy effective theory

This is not the end of the story
Grand Unified Theories (GUTs)

- The SM gauge interactions are unified:
 \[SU(3)_C \times SU(2)_L \times U(1)_Y \subset G \]

- The SM fermions (quarks, leptons) are also unified:
 e.g.) \(G = SU(5) \quad (Q, U^C, E^C) = 10 \quad (D^C, L) = 5^* \)

 Charge quantization

- New GUT particles are automatically introduced:
 - X-boson: \(\left(\begin{array}{c} G \\ X \\ W \end{array} \right) \oplus B = 24 \)

 Prediction: Proton is not absolutely stable
Idea of extra dimensions

- **Thread:**
 - **Macroscopic:**
 - 1-dimensional object
 - **Microscopic:**
 - object with internal structure

- **Our world:**
 - **Macroscopic:**
 - 4-dimensional space-time
 - **Microscopic:**
 - higher-dimensional space-time

- **Dispersion relation for a higher dimensional particle:**
 \[E^2 = p^2 + (p_5^2 + p_6^2 + \cdots + m^2) \]

 Momentum in the extra dim. = Mass in the 4-d viewpoint
SM fermion masses and mixings:

\[m_u : m_c : m_t \sim 10^{-5} : 10^{-3} : 1, \quad \cdots \]
\[|V_{us}| : |V_{cb}| : |V_{ub}| \sim 0.22 : 0.04 : 0.003 \]

Why are the masses and mixings so hierarchical?

Approaches to this flavor problem:

- Flavor symmetry:
 - U(1) \cite{FroggattNielsen1979}
 - Non-Abelian discrete symmetry \cite{ManyIdeasThisWorkshop}

- Extra dimensions without imposing symmetries:
 - Volume suppression \cite{Yoshioka2000}
 - Localized fields \cite{ArkaniHamedSchmaltz2000}
Four Dimensional Coupling Constants

- 4D coupling constants are given by overlaps of the wave functions
- e.g.) 4D Yukawa interactions:

\[\mathcal{L}_{4D} = \left(y_{5D} \int dy \, f_{q}^{(0)}(y) f_{u}^{(0)}(y) f_{h}^{(0)}(y) \right) \bar{q}^{(0)}(x) u^{(0)}(x) h^{(0)}(x) \]

Locations of fermion and Higgs fields can account for the fermion mass hierarchy
1. Motivation
2. Localized fields in extra dimensions
3. Breaking of translational invariance by an adjoint Higgs
 - Doublet-Triplet Splitting in SUSY GUTs
 [MK and Masahiro Yamaguchi, Prog. Theor. Phys. 107, 433 (2002)]
 - Fermion mass hierarchy in SUSY GUTs
 [MK and Masahiro Yamaguchi, Int. J. Mod. Phys. A 19, 1715 (2004)]
 - Proton stability in low-scale GUTs
4. Summary
Doublet Triplet Splitting in SUSY GUTs

- 5D superpotential for $H = \begin{pmatrix} H_T \\ H_u \end{pmatrix}$:

 $$W_5 = H^C(y) \left[\partial_y + f\Xi(y) + g\Sigma(y) + M \right] H(y)$$

 $\langle \Xi(y) \rangle = 2\xi^2 y : \text{SU(5) singlet kink}$

- SU(5) breaking by $\langle \Sigma \rangle \neq 0$:

 $$g\langle \Sigma \rangle + M = \begin{cases}
 M_T \equiv M + 2gV & \text{for } H_T \\
 M_u \equiv M - 3gV & \text{for } H_u
 \end{cases}$$

 $l(H_T) \neq l(H_u)$

- Yukawa interaction with a singlet S:

 $$W_5 = \int dy S(x, y) H(x, y) \bar{H}(x, y) \quad \langle S \rangle \sim 10^{16} \text{GeV}$$

- Exponential profiles

 $$M_{T,T} \sim 10^{16} \text{GeV} \quad M_{H_u,H_d} \sim 100 \text{GeV}$$

[See also Maru, PLB522, 117(2001); Haba, Maru, PLB532, 93(2002)]
Fermion mass hierarchy in SUSY GUTs

- SU(5) breaking by $\langle \Sigma \rangle \neq 0$
 splits quarks from leptons in the same multiplets

 - Mass difference between the down-type quarks and charged leptons

- Exponential profiles
 - Realistic pattern of the fermion masses, mixings and CKM phase

[See also Maru, PLB522, 117(2001)]

$\Psi(10) = (Q, U^C, E^C)$

$\Sigma \neq 0$