Searches for vector-like quarks and ttbar resonances with the ATLAS detector

PASCOS 2013, Taipei (Taiwan)

Tobias Heck
on behalf of the ATLAS Collaboration

Institute for physics
Johannes Gutenberg University Mainz, Germany

24th November, 2013
Motivation

- Standard Model of particle physics well confirmed
- Unanswered questions remaining
 - Dark Matter
 - Fermion generations
 - Mass hierarchy
 - Matter-Antimatter asymmetry
 - Fine tuning
 - ...and more...
- Hint for new physics!?
- Several beyond standard model (BSM) theories predict new physics in the heavy quark and top sector
 - Little / Composite Higgs
 - Randall-Sundrum (with warped extra dimensions)
 - Technicolor / Topcolor
 - ...and more...

Tobias Heck (JGU Mainz, ATLAS)

vector-like quarks and ttbar resonances

24th November, 2013
Presenting several searches for new physics using

- 14.3 fb$^{-1}$ of data @ $\sqrt{s} = 8$ TeV
- recorded by ATLAS experiment at the LHC from April to October 2012

$t\bar{t}$ resonances searches

- $t\bar{t} \rightarrow$ lepton + jets [ATLAS-CONF-2013-052]

Heavy vector like quark pair searches

- $T \bar{T} \rightarrow Ht + X$ [ATLAS-CONF-2013-018]
- $T \bar{T} \rightarrow Wb + X$ [ATLAS-CONF-2013-060]
- $T \bar{T} \rightarrow Zt + X$ and $B\bar{B} \rightarrow Zb + X$ [ATLAS-CONF-2013-056]

Same sign dilepton + b-jets

- $t\bar{t} t\bar{t}$, tt, Chiral quarks [ATLAS-CONF-2013-051]
Search for heavy resonance decaying into $t\bar{t}$ pair

- Top quark has $\approx 99.9\%$ BR for $t \rightarrow W + b$
- Three different decay channels, classified via W-decay modes
 - All-hadronic (alljets), di-leptonic (dileptons), semi-leptonic (lepton+jets)

Top Pair Branching Fractions

<table>
<thead>
<tr>
<th>Decay</th>
<th>e+e-</th>
<th>e+jets</th>
<th>μ+μ-</th>
<th>μ+jets</th>
<th>τ+τ-</th>
<th>τ+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>e+e-</td>
<td>1%</td>
<td>15%</td>
<td>2%</td>
<td>15%</td>
<td>1%</td>
<td>15%</td>
</tr>
<tr>
<td>e+jets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ+μ-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ+jets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ+τ-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ+jets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top Pair Decay Channels

- All-hadronic (alljets), di-leptonic (dileptons), semi-leptonic (lepton+jets)
$t\bar{t} \rightarrow \text{LEPTON + JETS}$

- Benchmark models
 - Narrow width leptophobic topcolor Z'
 \(\Gamma/m = 1.2\%\) [Model IV von Harris et al.]
 - Broad width Kaluza-Klein gluon
 \(g_{KK} \ (\Gamma/m = 15.3\%)\) [R.S., warped extra-dim.]

- Resolved and boosted topologies

- Reconstruction of hadronic top
 - Resolved: 2-3 Anti-k_T \((R = 0.4)\) jets
 - Boosted: one large radius Anti-k_T \((R = 1.0)\) jet
 \(p_T \geq 300\ \text{GeV}, \ m_{\text{jet}} \geq 100\ \text{GeV}, \ \sqrt{d_{12}} \geq 40\ \text{GeV}\)

- Reconstruction of leptonic top
 - 1 Anti-k_T \((R = 0.4)\) jet, 1 isolated lepton, E_T^{miss}
 - At least one b-tag
 - Clear separation of leptonic and hadronic objects: \(\Delta\Phi(\text{fatjet, lepton}) > 2.3\)
 and \(\Delta R(\text{fatjet, leptonic jet}) > 1.5\)

- Resolved orthogonal to boosted channel
\(t\bar{t} \rightarrow \text{LEPTON} + \text{JETS} \)

- **Benchmark models**
 - Narrow width leptophobic topcolor \(Z' \)
 \((\Gamma/m = 1.2\%) \) [Model IV von Harris et al.]
 - Broad width Kaluza-Klein gluon
 \(g_{KK} (\Gamma/m = 15.3\%) \) [R.S., warped extra-dim.]

- **Resolved and boosted topologies**

- **Reconstruction of hadronic top**
 - Resolved: 2-3 Anti-\(k_T \) (\(R = 0.4 \)) jets
 - Boosted: one large radius Anti-\(k_T \) (\(R = 1.0 \)) jet
 \(p_T \geq 300 \text{ GeV}, m_{\text{jet}} \geq 100 \text{ GeV}, \sqrt{d_{12}} \geq 40 \text{ GeV} \)

- **Reconstruction of leptonic top**
 - 1 Anti-\(k_T \) (\(R = 0.4 \)) jet, 1 isolated lepton, \(E_T^{\text{miss}} \)
 - At least one b-tag
 - Clear separation of leptonic and hadronic objects: \(\Delta \Phi(\text{fatjet, lepton}) > 2.3 \)
 and \(\Delta R(\text{fatjet, leptonic jet}) > 1.5 \)
 - Resolved orthogonal to boosted channel
$t\bar{t} \rightarrow \text{LEPTON} + \text{JETS}$

- Benchmark models
 - Narrow width leptophobic topcolor Z'
 $(\Gamma/m = 1.2\%)$ [Model IV von Harris et al.]
 - Broad width Kaluza-Klein gluon
 g_{KK} $(\Gamma/m = 15.3\%)$ [R.S., warped extra-dim.]

- Resolved and boosted topologies

- Reconstruction of hadronic top
 - Resolved: 2-3 Anti-k_T ($R = 0.4$) jets
 - Boosted: one large radius Anti-k_T ($R = 1.0$) jet
 $p_T \geq 300$ GeV, $m_{\text{jet}} \geq 100$ GeV, $\sqrt{d_{12}} \geq 40$ GeV

- Reconstruction of leptonic top
 - 1 Anti-k_T ($R = 0.4$) jet, 1 isolated lepton, E_T^{miss}
 - At least one b-tag
 - Clear separation of leptonic and hadronic objects: $\Delta\Phi($fatjet, lepton$) > 2.3$
 and $\Delta R($fatjet, leptonic jet$) > 1.5$
 - Resolved orthogonal to boosted channel
$t\bar{t} \rightarrow \text{LEPTON} + \text{JETS}$

- **Benchmark models**
 - Narrow width leptophobic topcolor Z'
 $(\Gamma/m = 1.2\%)$ [Model IV von Harris et al.]
 - Broad width Kaluza-Klein gluon g_{KK}
 $(\Gamma/m = 15.3\%)$ [R.S., warped extra-dim.]

- **Resolved and boosted topologies**

- **Reconstruction of hadronic top**
 - Resolved: 2-3 Anti-k_T ($R = 0.4$) jets
 - Boosted: one large radius Anti-k_T ($R = 1.0$) jet
 $p_T \geq 300$ GeV, $m_{\text{jet}} \geq 100$ GeV, $\sqrt{d_{12}} \geq 40$ GeV

- **Reconstruction of leptonic top**
 - 1 Anti-k_T ($R = 0.4$) jet, 1 isolated lepton, E_T^{miss}

- **At least one b-tag**

- **Clear separation of leptonic and hadronic objects**
 - $\Delta\Phi(\text{fatjet, lepton}) > 2.3$
 - $\Delta R(\text{fatjet, leptonic jet}) > 1.5$

- **Resolved orthogonal to boosted channel**

Diagram:
- Proton interactions
- $t\bar{t}$ resonance searches
- Leptonic and hadronic objects
- Clear separation criteria

Graphs:
- Event distribution
- Data vs. Background
- m_T^{had} vs. m_T^{had}
- $t\bar{t}$ vs. $t\bar{t}$

ATLAS Preliminary
- $\mathbb{L} dt = 14.2$ fb$^{-1}$
- $\sqrt{s} = 8$ TeV
- Distributions for different processes

References:
- [Model IV von Harris et al.]
- [R.S., warped extra-dim.]
\(t\bar{t} \rightarrow \text{LEPTON + JETS EVENT RECONSTRUCTION} \)

- Combine hadronic and leptonic top for reconstruction of \(t\bar{t} \) system
- Boosted channel
 - Use highest \(p_T \) fat jet passing selection as hadronic top candidate
- Resolved channel
 - Pick combination of jets using \(\chi^2 \) algorithm (constraints on \(W \)-mass and top-mass)
 \[
 \chi^2 = \left(\frac{m_{jj} - m_W}{\sigma_W} \right)^2 + \left(\frac{m_{jjb} - m_{jj} - m_W}{\sigma_{\text{th-W}}} \right)^2 + \left(\frac{m_{ll\nu} - m_{tl}}{\sigma_{\text{tl}}} \right)^2 + \left(\frac{(p_{T}^{jjb} - p_{T}^{ll\nu}) - (p_{T}^{\text{th}} - p_{T}^{tl})}{\sigma_W} \right)^2
 \]
- Discriminant: reconstructed mass \(m_{t\bar{t}}^{\text{reco}} \) of the full \(t\bar{t} \) system
Absence of any significant excess in the $m_{t\bar{t}}$ distributions

Set (95% CL) Bayesian limits on $\sigma_{Z'\rightarrow t\bar{t}} \times BR_{Z'\rightarrow t\bar{t}}$ and $\sigma_{g_{KK}\rightarrow t\bar{t}} \times BR_{g_{KK}\rightarrow t\bar{t}}$

- narrow Z': excluded within $0.5 - 1.8$ ($0.5 - 1.9$) TeV range observed (expected)
- broad g_{KK}: excluded within $0.5 - 2.0$ ($0.5 - 2.1$) TeV range observed (expected)

Graphs:
- Plot of $\sigma_{Z'\rightarrow t\bar{t}} \times BR_{Z'\rightarrow t\bar{t}}$ vs. Z' mass [TeV]
- Plot of $\sigma_{g_{KK}\rightarrow t\bar{t}} \times BR_{g_{KK}\rightarrow t\bar{t}}$ vs. g_{KK} mass [TeV]
Heavy vector like quark pair searches

Introduction

New weak isospin singlet, doublet or triplet, preferred coupling to 3rd gen. quarks

Heavy top quark partner T plays role in Higgs mass regulation in many models

Three decay modes

- $T \rightarrow Wb$, $T \rightarrow Zt$, $T \rightarrow Ht$
- $B \rightarrow Wt$, $B \rightarrow Zb$, ($B \rightarrow Hb$)

Two production regimes

- Pair (QCD), dominant for $m_{B,T} < 1$ TeV
- Single (weak), dominant for $m_{B,T} > 1$ TeV
\(T \bar{T} \rightarrow Ht + X \)

- **Signature**
 - Lepton+jets channel (at least one \(W \rightarrow l\nu \))
 - Exactly one isolated lepton, \(E_{\text{miss}}^{\text{T}} \)
 - \(\geq 6 \) Anti-\(k_T \) (\(R=0.4 \)) jets and \(\geq 4 \) b-tags
 - \(H \rightarrow b\bar{b} \) (\(m_H = 125 \) GeV)

- **Sensitive to multiple decay modes**
 - \(T \bar{T} \rightarrow Ht + H\bar{t} \)
 - \(T \bar{T} \rightarrow Ht + Z\bar{t} \)
 - \(T \bar{T} \rightarrow Ht + W\bar{b} \)

- 2 and 3 b-tag events used as control region
- 4 b-tag events used as signal region

- **Discriminant:** \(H_T = \sum_{\text{jet}} p_T^{\text{jet}} + p_T^{\text{lepton}} + E_{\text{miss}}^{\text{T}} \)

- \(H_T \) distribution peaks around \(2m_T \) for signal

- 2 b-tag events with \(H_T < 700 \) GeV rejected, to obtain orthogonality to \(T \bar{T} \rightarrow Wb + X \) searches
Absence of any significant data excess in the H_T spectra

Set (95% CL) CL_s limits on $\sigma_{T\bar{T}}$

- Weak isospin doublet: $m_T > 790 \ (745) \text{ GeV}$ observed (expected)
- Weak isospin singlet: $m_T > 640 \ (615) \text{ GeV}$ observed (expected)
Heavy vector like quark pair searches

\(T \bar{T} \rightarrow Wb + X \)

Signature
- Lepton+jets channel
 - Exactly one isolated lepton, \(E_T^{\text{miss}} \)
 - \(\geq 4 \) Anti-\(k_T \) (\(R=0.4 \)) jets and \(\geq 1 \) b-tag
 - Two W-Bosons, \(BR(T \rightarrow Wb) = 1 \)
 - b-jets: 1 b-tagged jet, 2\(^{nd} \) highest b-tag weight jet

Leptonically decaying W-boson
- Lepton + \(E_T^{\text{miss}} \)

Hadronically decaying W-boson
- Type 1: boosted W-Boson, single merged jet
 - \(60 < m_{jj} < 120 \ \text{GeV}, \ p_T^{jj} > 250 \ \text{GeV} \)
- Type 2: semi-boosted W-Boson, 2 separated jets
 - \(60 < m_{jj} < 120 \ \text{GeV}, \ p_T^{jj} > 200 \ \text{GeV}, \ \Delta R(j,j) < 0.8 \)
 - Excluding b-jet candidates from reconstruction
 - Type 2 excluded if type 1 successfully reconstructed

Reject events with \(\geq 6 \) jets and \(\geq 3 \) b-tags to obtain orthogonality to \(T \bar{T} \rightarrow Ht + X \) searches
$\bar{T}T \rightarrow Wb + X$ MASS RECONSTRUCTION

- $H_T > 800$ GeV
- separation $\min(\Delta R(W_{\text{had}}/\text{lepton}, b\text{jet}_{1,2})) > 1.4$
- Discriminant: Reconstructed T mass m_{reco} ($T = W_{\text{had}} + b\text{jet}$)
 - Two possibilities to assign b-jet candidates
 - W_{lep} with two solutions (due to two neutrino solutions)
 - Choose the one possibility minimizing difference between T masses $\min(|m_{T}^{\text{lep}} - m_{T}^{\text{had}}|)$

ATLAS Preliminary

Events / 0.2

Data ($\sqrt{s} = 8$ TeV)

TT (600) Chiral

tt(600) Chiral

tt(600) Singlet

Non-tt

Total BG uncert.

$\int L dt = 14.3$ fb$^{-1}$

Data / BG

1

2

3

0

5

10

15

20

25

30

35

40

45

0

0.5

1

1.5

2

2.5

3

3.5

min $\Delta R(l,b)$

Events / 150 GeV

Data ($\sqrt{s} = 8$ TeV)

TT (600) Chiral

TT (600) Singlet

tt(600) Chiral

Non-tt

Total BG uncert.

$\int L dt = 14.3$ fb$^{-1}$

Data / BG

1

2

3

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

m_{reco} [GeV]
Absence of any significant data excess in the m_{reco} spectra

Set (95% CL) CL_s limits on $\sigma_{T\bar{T}}$

- Chiral 4th generation T quark: $m_T > 740 \ (770) \ \text{GeV}$ observed (expected)
- Vector-like singlet T quark: $m_T > 505 \ (630) \ \text{GeV}$ observed (expected)
Heavy vector like quark pair searches

$T \bar{T} \rightarrow Zt + X$ AND $B \bar{B} \rightarrow Zb + X$

- Sensitive to T and B vector-like heavy quarks
- Signature
 - 2 same flavor leptons with opposite charge
 - ≥ 2 jets and ≥ 2 b-tags
 - high $p_T > 150$ GeV Z-Boson candidate reconstructed from the two leptons
 - choose Z-Boson closest within $m_Z \pm 15$ GeV
- 0 and 1 b-tag events used as control region
- 2 b-tag events used as signal region
- $H_T(jets) = \sum_{jet} p_T^{jet} > 600$ GeV
- Discriminant: $m(Zb)$ sum of Z-Boson and highest p_T b-jet candidate
Absence of any significant data excess in the $m(Zb)$ spectra

Set (95% CL) CL_s limits on $\sigma_{T\bar{T}\rightarrow Zt + X}$ and $\sigma_{B\bar{B}\rightarrow Zb + X}$

<table>
<thead>
<tr>
<th>m_Q</th>
<th>type</th>
<th>obs.</th>
<th>(exp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>singlet</td>
<td>585</td>
<td>(550)</td>
</tr>
<tr>
<td></td>
<td>doublet</td>
<td>680</td>
<td>(660)</td>
</tr>
<tr>
<td>m_T</td>
<td>singlet</td>
<td>645</td>
<td>(635)</td>
</tr>
<tr>
<td></td>
<td>doublet</td>
<td>725</td>
<td>(720)</td>
</tr>
<tr>
<td>m_B</td>
<td>singlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>doublet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SAME SIGN DILEPTON + B-JETS

- **Very small cross section in the Standard Model**
- **Several production channels**
 - Chiral or vector like heavy quarks

 \[B\bar{B} \rightarrow Wt + X, \ T\bar{T} \rightarrow Zt + X, \ T\bar{T} \rightarrow Ht + X \]

 - Enhanced production of four tops \((\sigma_{SM}^{t\bar{t}t\bar{t}} \approx 1\,\text{fb}) \)

 - Production of two positively charged top quarks mediated through new heavy particle \(\tilde{g} \) or \(g_{KK} \)

- **Baseline selection**
 - 2 same flavor leptons with same electric charge \(m_{ll} > 15 \,\text{GeV}, \ Z \text{ veto } |m_{ll} - m_{Z}| > 10 \,\text{GeV} \)

 - \(\geq 2 \text{ jets and } \geq 1 \text{ b-tag} \)

 - \(E_{T}^{miss} > 40 \,\text{GeV} \) and \(H_T > 550 \,\text{GeV} \)

- **Signal specific selection**

 - Heavy Quark: \(H_T > 650 \,\text{GeV} \)

 - \(t\bar{t} t\bar{t} \) : \(H_T > 650 \,\text{GeV} \), 2 b-tagged jets

 - tt: positive leptons only
Absence of any significant data excess in the H_T spectra

Set (95% CL) CL_s limits on T, B and b' production

<table>
<thead>
<tr>
<th>m_Q</th>
<th>type</th>
<th>obs.</th>
<th>(exp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_T</td>
<td>singlet</td>
<td>540</td>
<td>(590)</td>
</tr>
<tr>
<td>m_B</td>
<td>singlet</td>
<td>590</td>
<td>(630)</td>
</tr>
<tr>
<td>$m_{b'}$</td>
<td>chiral</td>
<td>720</td>
<td>(770)</td>
</tr>
</tbody>
</table>

$[\text{GeV}]$ $[\text{GeV}]$
Absence of any significant data excess in the H_T spectra

Set (95% CL) CL_s limits on $\sigma_{G \rightarrow t\bar{t} t\bar{t}} \times BR_{G \rightarrow t\bar{t} t\bar{t}}$ and $\sigma_{g_{KK} \rightarrow t\bar{t} t\bar{t}} \times BR_{g_{KK} \rightarrow t\bar{t} t\bar{t}}$

- SGlueon G: $m_G > 800 (830) \text{ GeV}$ observed (expected)
- KK gluon g_{KK}: $m_{g_{KK}} > 900 (920) \text{ GeV}$ observed (expected)
HEAVY VECTOR LIKE T QUARK PAIR SEARCHES SUMMARY

ATLAS Preliminary
Status: Lepton-Photon 2013
$\sqrt{s} = 8$ TeV, $\int L dt = 14.3$ fb$^{-1}$

- 95% CL exp. excl.
- 95% CL obs. excl.

SU(2) (T,B) doub.
SU(2) singlet

$\text{m}_T = 350$ GeV
$\text{m}_T = 400$ GeV
$\text{m}_T = 450$ GeV
$\text{m}_T = 500$ GeV
$\text{m}_T = 550$ GeV
$\text{m}_T = 600$ GeV
$\text{m}_T = 650$ GeV
$\text{m}_T = 700$ GeV
$\text{m}_T = 750$ GeV
$\text{m}_T = 800$ GeV
$\text{m}_T = 850$ GeV

BR($T \rightarrow Ht$) vs. BR($T \rightarrow Wb$)

ATLAS-CONF-2013-018
ATLAS-CONF-2013-051
ATLAS-CONF-2013-056
ATLAS-CONF-2013-060

Tobias Heck (JGU Mainz, ATLAS)
HEAVY VECTOR LIKE B QUARK PAIR SEARCHES SUMMARY

ATLAS Preliminary

Status: Lepton-Photon 2013

$\sqrt{s} = 8$ TeV, $\int L dt = 14.3$ fb$^{-1}$

- 95% CL exp. excl.
- 95% CL obs. excl.

SU(2) (B,Y) doub.
SU(2) singlet

- Same-Sign $[\text{ATLAS-CONF-2013-051}]$
- $Zb/t+X$ $[\text{ATLAS-CONF-2013-056}]$

For $m_B = 350$ GeV, $m_B = 400$ GeV, $m_B = 450$ GeV, $m_B = 500$ GeV, $m_B = 550$ GeV, $m_B = 600$ GeV, $m_B = 650$ GeV, $m_B = 700$ GeV, $m_B = 750$ GeV, $m_B = 800$ GeV, $m_B = 850$ GeV

$\text{BR}(B \rightarrow Hb)$

$\text{BR}(B \rightarrow Wt)$
Conclusions

- Searching for answers to remaining questions in the SM
- Presented several searches for new physics beyond the SM with 14.3 fb$^{-1}$ 2012 Data @ $\sqrt{s} = 8$ TeV
- No significant deviations from SM found for any of the presented searches
- Limits set on masses for new particles of several models
 - Vector like heavy quarks (singlets, doublets)
 - Chiral heavy quarks
 - $t\bar{t}$ resonances (Z' and g_{KK})
 - Four top final states (\tilde{g} and g_{KK})
- Stay tuned for improvements and updates in the future!
 - New results with full 20 fb$^{-1}$ 2012 Data @ $\sqrt{s} = 8$ TeV
 - RUN II @ LHC with $\sqrt{s} = 13 - 14$ TeV from 2015 on

Tobias Heck (JGU Mainz, ATLAS)
Backup
TTBarRes lep+jets selections

ATLAS Preliminary Simulation

Resolved (excl.) $\sqrt{s}=8$ TeV
- μ + jets, ≥ 0 b-tags
- μ + jets, ≥ 1 b-tags
- e + jets, ≥ 0 b-tags
- e + jets, ≥ 1 b-tags

Efficiency [%]

ATLAS Preliminary Simulation

Boosted $\sqrt{s}=8$ TeV
- μ + jets, ≥ 0 b-tags
- μ + jets, ≥ 1 b-tags
- e + jets, ≥ 0 b-tags
- e + jets, ≥ 1 b-tags

Efficiency [%]

ATLAS Preliminary Simulation

Combined $\sqrt{s}=8$ TeV
- μ + jets, ≥ 0 b-tags
- μ + jets, ≥ 1 b-tags
- e + jets, ≥ 0 b-tags
- e + jets, ≥ 1 b-tags

Efficiency [%]
Backup

TTBarRes lep+jets event display

leptonic top candidate

hadronic top candidate

Muon missing E_T

leptonic top candidate

hadronic top candidate

hadronic top candidate

leptonic top candidate

vector-like quarks and ttbar resonances

Tobias Heck (JGU Mainz, ATLAS)