Model-independent analysis of scenarios with vector-like quarks

Luca Panizzi

University of Southampton, UK
What are vector-like fermions?
and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ
transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$
What are vector-like fermions? and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

Why are they called “vector-like”?
What are vector-like fermions? and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$.

Why are they called “vector-like”?

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \left(J^{+}_{\mu} W^+_\mu + J^{-}_{\mu} W^-_{\mu} \right)$$

Charged current Lagrangian
What are vector-like fermions? and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$.

Why are they called “vector-like”?

$$
\mathcal{L}_W = \frac{g}{\sqrt{2}} \left(J^{\mu +} W_\mu^+ + J^{\mu -} W_\mu^- \right)
$$
Charged current Lagrangian

- SM chiral quarks: ONLY left-handed charged currents

$$
J^{\mu +} = J^{\mu +}_L + J^{\mu +}_R
$$

with

$$
\begin{align*}
J^{\mu +}_L &= \bar{u}_L \gamma^\mu d_L = \bar{u} \gamma^\mu (1 - \gamma^5) d = V - A \\
J^{\mu +}_R &= 0
\end{align*}
$$
What are vector-like fermions? and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$.

Why are they called “vector-like”?

The charged current Lagrangian is given by

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \left(J_{\mu+} W_{\mu}^+ + J_{\mu-} W_{\mu}^- \right)$$

- **SM chiral quarks**: ONLY left-handed charged currents

 $$J_{\mu+} = J_{L}^{\mu+} + J_{R}^{\mu+}$$

 with

 $$\begin{align*}
 j_{L}^{\mu+} &= \bar{u}_L \gamma^\mu d_L = \bar{u} \gamma^\mu (1 - \gamma^5) d = V - A \\
 j_{R}^{\mu+} &= 0
 \end{align*}$$

- **Vector-like quarks**: BOTH left-handed and right-handed charged currents

 $$J_{\mu+} = J_{L}^{\mu+} + J_{R}^{\mu+} = \bar{u}_L \gamma^\mu d_L + \bar{u}_R \gamma^\mu d_R = \bar{u} \gamma^\mu d = V$$
What are vector-like fermions?
and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$.

Vector-like quarks in many models of New Physics

- **Warped or universal extra-dimensions**
 KK excitations of bulk fields

- **Composite Higgs models**
 VLQ appear as excited resonances of the bounded states which form SM particles

- **Little Higgs models**
 partners of SM fermions in larger group representations which ensure the cancellation of divergent loops

- **Gauged flavour group** with low scale gauge flavour bosons
 required to cancel anomalies in the gauged flavour symmetry

- **Non-minimal SUSY extensions**
 VLQs increase corrections to Higgs mass without affecting EWPT
SM and a vector-like quark

\[\mathcal{L}_M = -M \bar{\psi} \psi \]

Gauge invariant mass term without the Higgs
SM and a vector-like quark

\[\mathcal{L}_M = -M \bar{\psi} \psi \]

Gauge invariant mass term without the Higgs

Charged currents both in the left and right sector

\[\psi_L' \psi_L \rightarrow W \]
\[\psi_R' \psi_R \rightarrow W \]
$\mathcal{L}_M = -M \bar{\psi} \psi$ \hspace{1cm} Gauge invariant mass term without the Higgs

Charged currents both in the left and right sector

There can be partners of top and bottom or quarks with exotic charges $(5/3,-4/3\ldots)$
SM and a vector-like quark

\[\mathcal{L}_M = -M \bar{\psi} \psi \]
Gauge invariant mass term without the Higgs

Charged currents both in the left and right sector

There can be partners of top and bottom or quarks with exotic charges (5/3, -4/3, ...)

They can mix with SM quarks

\[t' \rightarrow u_i \quad b' \rightarrow d_i \]

Dangerous FCNCs \(\rightarrow\) strong bounds on mixing parameters
BUT
Many open channels for production and decay of heavy fermions

Rich phenomenology to explore at LHC
Production channels

Vector-like quarks can be produced in the same way as SM quarks plus FCNCs channels

- **Pair production**, dominated by QCD and sensitive to the q' mass independently of the representation the q' belongs to
- **Single production**, only EW contributions and sensitive to both the q' mass and its mixing parameters
Decays

SM partners

Neutral currents

Charged currents

Exotics

Not all decays may be kinematically allowed
it depends on representations and mass differences
Searches at the LHC

CMS (t')

ATLAS (t')

Bounds from pair production between 600 GeV and 800 GeV depending on the decay channel

Common assumption
only one vector-like quark mixing only with third generation

While most theoretical models predict a new quark sector
and, in principle, mixing can be with all families
General mixing: b' pair production

Common assumption
CC: $b' \rightarrow tW$

Searches in the same-sign dilepton channel (possibly with b-tagging)
General mixing: b' pair production

Common assumption
CC: $b' \rightarrow tW$

Searches in the same-sign dilepton channel (possibly with b-tagging)

If the b' decays both into Wt and Wq

There can be less events in the same-sign dilepton channel!
Multiple vector-like quarks

Scenario with X and B (decaying to third generation only)
Multiple vector-like quarks

Scenario with X and B (decaying to third generation only)

Scenario with a bidoublet \(\begin{pmatrix} X & T_1 \\ T_2 & B \end{pmatrix} \) (general mixing)
Multiple vector-like quarks

Scenario with X and B (decaying to third generation only)

$P \to B \to t, \bar{t} \to W^-, W^+$

$P \to \bar{B} \to W^+, W^-$

Scenario with a bidoublet \(\begin{pmatrix} X & T_1 \\ T_2 & B \end{pmatrix} \) (general mixing)

$P \to B \to \text{jet}, \bar{t} \to W^-, W^+$

$P \to \bar{B} \to W^+, W^-$

A given final state can be fed by different channels!
(with different kinematics)
T pair production \rightarrow 6 possible decays: $W^+ j$ $W^+ b$ $Z j$ $Z t$ $H j$ $H t$
Counting the final states

T pair production \rightarrow 6 possible decays: W^+, W^-, Z, Z^*, H, H^*

$PP \rightarrow T\bar{T} \rightarrow$

\[
\begin{pmatrix}
W^+jW^-j & W^+jW^-\bar{b} & W^+jZj & W^+jZ\bar{t} & W^+jHj & W^+jH\bar{t} \\
W^+bW^-j & W^+bW^-\bar{b} & W^+bZj & W^+bZ\bar{t} & W^+bHj & W^+bH\bar{t} \\
ZjW^-j & ZjW^-\bar{b} & ZjZj & ZjZ\bar{t} & ZjHj & ZjH\bar{t} \\
ZtW^-j & ZtW^-\bar{b} & ZtZj & ZtZ\bar{t} & ZtHj & ZtH\bar{t} \\
HjW^-j & HjW^-\bar{b} & HjZj & HjZ\bar{t} & HjHj & HjH\bar{t} \\
HtW^-j & HtW^-\bar{b} & HtZj & HtZ\bar{t} & HtHj & HtH\bar{t}
\end{pmatrix}
\]

(only) 36 possible combinations of decays into SM particles!
each one with its peculiar kinematics
Counting the final states

T pair production \rightarrow 6 possible decays: W^+j W^+b Zj Zt Hj Ht

$$PP \rightarrow T\bar{T} \rightarrow \begin{pmatrix} W^+jW^-j & W^+jW^-\bar{b} & W^+jZj & W^+jZ\bar{t} & W^+jHj & W^+jH\bar{t} \\ W^+bW^-j & W^+bW^-\bar{b} & W^+bZj & W^+bZ\bar{t} & W^+bHj & W^+bH\bar{t} \\ ZjW^-j & ZjW^-\bar{b} & ZjZj & ZjZ\bar{t} & ZjHj & ZjH\bar{t} \\ ZtW^-j & ZtW^-\bar{b} & ZtZj & ZtZ\bar{t} & ZtHj & ZtH\bar{t} \\ HjW^-j & HjW^-\bar{b} & HjZj & HjZ\bar{t} & HjHj & HjH\bar{t} \\ HtW^-j & HtW^-\bar{b} & HtZj & HtZ\bar{t} & HtHj & HtH\bar{t} \end{pmatrix}$$

(only) 36 possible combinations of decays into SM particles!

each one with its peculiar kinematics

B pair production \rightarrow 6 possible decays: W^-j W^-t Zj Zb Hj Hb

36 possible combinations of decays into SM particles
Counting the final states

T pair production → 6 possible decays: W^+j W^+b Zj Zt Hj Ht

$PP \rightarrow T\bar{T} \rightarrow$

\[
\begin{pmatrix}
W^+jW^-j & W^+jW^-\bar{b} & W^+jZj & W^+jZ\bar{t} & W^+jHj & W^+jH\bar{t} \\
W^+bW^-j & W^+bW^-\bar{b} & W^+bZj & W^+bZ\bar{t} & W^+bHj & W^+bH\bar{t} \\
ZjW^-j & ZjW^-\bar{b} & ZjZj & ZjZ\bar{t} & ZjHj & ZjH\bar{t} \\
ZtW^-j & ZtW^-\bar{b} & ZtZj & ZtZ\bar{t} & ZtHj & ZtH\bar{t} \\
HjW^-j & HjW^-\bar{b} & HjZj & HjZ\bar{t} & HjHj & HjH\bar{t} \\
HtW^-j & HtW^-\bar{b} & HtZj & HtZ\bar{t} & HtHj & HtH\bar{t}
\end{pmatrix}
\]

(only) 36 possible combinations of decays into SM particles! each one with its peculiar kinematics

B pair production → 6 possible decays: W^-j W^-t Zj Zb Hj Hb

36 possible combinations of decays into SM particles

X pair production → W^+j W^+t

4 combinations

Y pair production → W^-j W^-b

4 combinations
Counting the final states

T pair production \rightarrow 6 possible decays: W^+j W^+b Zj Zt Hj Ht

$PP \rightarrow T\bar{T} \rightarrow$

\[
\begin{pmatrix}
W^+jW^-j & W^+jW^-\bar{b} & W^+jZj & W^+jZ\bar{t} & W^+jHj & W^+jH\bar{t} \\
W^+bW^-j & W^+bW^-\bar{b} & W^+bZj & W^+bZ\bar{t} & W^+bHj & W^+bH\bar{t} \\
ZjW^-j & ZjW^-\bar{b} & ZjZj & ZjZ\bar{t} & ZjHj & ZjH\bar{t} \\
ZtW^-j & ZtW^-\bar{b} & ZtZj & ZtZ\bar{t} & ZtHj & ZtH\bar{t} \\
HjW^-j & HjW^-\bar{b} & HjZj & HjZ\bar{t} & HjHj & HjH\bar{t} \\
HtW^-j & HtW^-\bar{b} & HtZj & HtZ\bar{t} & HtHj & HtH\bar{t}
\end{pmatrix}
\]

(only) 36 possible combinations of decays into SM particles!

each one with its peculiar kinematics

B pair production \rightarrow 6 possible decays: W^-j W^-t Zj Zb Hj Hb

36 possible combinations of decays into SM particles

X pair production \rightarrow W^+j W^+t

4 combinations

Y pair production \rightarrow W^-j W^-b

4 combinations

There are 80 combinations of decays of (pair produced) VLQs into SM!

each one with its kinematic properties!
Efficiencies of searches

Numerical Simulation

MadGraph, CalcHEP, ... → Pythia → Delphes

$PP \rightarrow Q\bar{Q} \rightarrow$ final state → hadronization → detector simulation → signal
Efficiencies of searches

Numerical Simulation

MadGraph, CalcHEP, ... → Pythia → Delphes

PP → Q̅Q → final state → hadronization → detector simulation → signal

Efficiencies

signal →

\[
\begin{align*}
\text{Search 1} & \quad \rightarrow \quad \{ \text{bin 1} & \quad \rightarrow \quad \text{efficiency 1} \\
\text{Search 2} & \quad \rightarrow \quad \{ \text{bin 2} & \quad \rightarrow \quad \text{efficiency 2} \\
& \quad \vdots & \quad \vdots \\
\text{Search N} & \quad \rightarrow \quad \{ \text{bin n} & \quad \rightarrow \quad \text{efficiency n} \\
\end{align*}
\]

Efficiencies for search 2

Efficiencies for search N
Efficiencies of searches

Numerical Simulation

MadGraph, CalcHEP, . . . → Pythia hadronization → Delphes detector simulation → signal

$PP \rightarrow Q\bar{Q} \rightarrow \text{final state}$

Efficiencies

\[
\begin{align*}
\text{Search 1} & \quad \rightarrow \quad \text{Efficiencies for search 1} \\
\text{Search 2} & \quad \rightarrow \quad \text{Efficiencies for search 2} \\
\vdots & \quad \quad \quad \\
\text{Search N} & \quad \rightarrow \quad \text{Efficiencies for search N}
\end{align*}
\]

Knowing the efficiencies for all combinations of final states it is possible to reconstruct any signal. Any model containing any number of VLQs can be analysed in a single framework!
The exclusion confidence level
Example with a fictional search

<table>
<thead>
<tr>
<th>Observation</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>310 events</td>
<td>300 events</td>
</tr>
</tbody>
</table>
The exclusion confidence level

Example with a fictional search

<table>
<thead>
<tr>
<th>Observation</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>310 events</td>
<td>300 events</td>
</tr>
</tbody>
</table>

Signal

Case I: 5 events

Exclusion CL $\simeq 14\%$

Exclusion CL $= 1 - \frac{CL(s+b)}{CL(b)} = 1 - \frac{p\text{-value}(s+b)}{1 - p\text{-value}(b)}$

Case II: 42 events

Exclusion CL $\simeq 94\%$

Case III: 100 events

Exclusion CL $\simeq 99.99\%$
Select a benchmark, i.e. number of VLQs of each charge, masses and BRs
Exclusion confidence level of the benchmark
against data from searches (any search!) using only one simulation
(Very) Preliminary results

Degenerate \((T B)\) doublet

Implemented searches (only CMS temporarily)

<table>
<thead>
<tr>
<th>(\alpha_T)</th>
<th>(L_P) (monolepton)</th>
<th>SS dileptons</th>
<th>OS dileptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 and 8 TeV</td>
<td>7 TeV</td>
<td>7 and 8 TeV</td>
<td>7 TeV</td>
</tr>
</tbody>
</table>

All these searches are SUSY-inspired, but it is ok since we only care about final states!

1. Stronger bounds when mixing with 3rd generation
2. Bounds in the ballpark of those obtained with direct searches of VLQs
3. Potential to improve direct searches and to exploit other BSM-inspired searches to test scenarios with VLQ
This is a conservative result: a “non-exclusion” result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays!
Remarks and subtleties

This is a conservative result: a “non-exclusion” result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays!

We only consider these topologies

\[
\begin{align*}
Q & \rightarrow q_{SM} \quad V_{SM} \\
Q & \rightarrow q_{SM} \quad H_{SM}
\end{align*}
\]
Remarks and subtleties

This is a conservative result: a “non-exclusion” result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays!

We only consider these topologies

The following decays have not been considered (model-dependency)

Other new sectors besides the VLQs

A dedicated simulation is required for these channels

But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an “exclusion” result is robust!
Remarks and subtleties

- **This is a conservative result:** a “non-exclusion” result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays! But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an “exclusion” result is **robust**!

- **Role of interferences:** if there is more than one VLQ with same charge and with close masses and/or widths, the interference effects at the level of amplitude squared cannot be neglected.
Remarks and subtleties

- **This is a conservative result:** a “non-exclusion” result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays! But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an “exclusion” result is **robust**!

- **Role of interferences:** if there is more than one VLQ with same charge and with close masses and/or widths, the interference effects at the level of amplitude squared cannot be neglected.

\[
\begin{align*}
A_1 &= \text{Diagram 1} \\
A_2 &= \text{Diagram 2} \\
A_3 &= \text{Diagram 3}
\end{align*}
\]

\[
\sigma \propto |A_1|^2 + |A_2|^2 + |A_3|^2 + 2\text{Re}[A_1A_2^* + A_1A_3^* + A_2A_3^*]
\]

It is possible to estimate the interference effect knowing the total widths and couplings to SM particles!

\[
\sigma'_Q(M_i) = \sigma_Q(M_i)(1 + \sum_{j \neq i}^{n_Q} y_{ij}) \quad \text{with} \quad y_{ij} = \frac{2\text{Re}[g_ag_b^*g_cg_d^*\left(\int P_i P_j^*\right)^2]}{g_a^2g_b^2(\int P_i P_j^*)^2 + g_c^2g_d^2(\int P_j P_j^*)^2}
\]

This expression describes with remarkable accuracy the interference effects in the NWA approximation.
Remarks and subtleties

- **This is a conservative result:** a “non-exclusion” result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays! But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an “exclusion” result is robust!

- **Role of interferences:** if there is more than one VLQ with same charge and with close masses and/or widths, the interference effects at the level of amplitude squared cannot be neglected.

- **Role of quantum mixing between states:** if there is more than one VLQ with same charge and with close masses and/or widths, the mixing at loop level can affect the cross-section.
Remarks and subtleties

- **This is a conservative result:** a “non-exclusion” result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays! But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an “exclusion” result is **robust**!

- **Role of interferences:** if there is more than one VLQ with same charge and with close masses and/or widths, the interference effects at the level of amplitude squared cannot be neglected.

- **Role of quantum mixing between states:** if there is more than one VLQ with same charge and with close masses and/or widths, the mixing at loop level can affect the cross-section.

Diagonalisation of the matrix of the propagators

\[
i\Delta_{ij} = \begin{pmatrix}
Q_1 & Q_1 & Q_2 \\
Q_2 & Q_1 & Q_2 \\
\end{pmatrix}
\]

The matrix is model-dependent: any particle (also new ones) can enter the loops!!
Remarks and subtleties

- **This is a conservative result**: a “non-exclusion” result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays! But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an “exclusion” result is **robust**!

- **Role of interferences**: if there is more than one VLQ with same charge and with close masses and/or widths, the interference effects at the level of amplitude squared cannot be neglected.

- **Role of quantum mixing between states**: if there is more than one VLQ with same charge and with close masses and/or widths, the mixing at loop level can affect the cross-section.

 It’s crucial to take into account these issues in order not to overestimate the signal!
Conclusions and Outlook

- After Higgs discovery, **Vector-like quarks** are a very promising playground for searches of new physics.

- Fairly **rich phenomenology at the LHC** and many possible channels to explore:
 - Signatures of single and pair production of VL quarks are accessible at current CM energy and luminosity and have been explored to some extent.
 - Current bounds on masses around 600-800 GeV, but searches are not fully optimized for general scenarios.

- **Model-independent studies** can be performed for pair and single production, and also to analyse scenarios with multiple vector-like quarks (work in progress, results very soon!)