Measurement of properties of the Higgs boson in bosonic decay channels using the ATLAS detector

Alberto Palma
on behalf of the ATLAS Collaboration

LIP & FCUL, Lisbon

PASCOS 2013
Taipei, 20th –26th November, 2013
Outline

- Introduction
 - Production and decay modes
 - Channels overview
 - Selection
 - Event categories
 - Backgrounds
- Properties (see also the talk of Florian Bernlochner)
 - Mass
 - Coupling strengths
 - Production mechanisms
- Summary
Introduction

- Most striking result from ATLAS and CMS experiments, so far:
 4th July, 2012: “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”

- Since then: compare the properties of the new particle with the SM predictions for the Higgs boson:
 - “Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC”
 - “Evidence for the spin-0 nature of the Higgs boson using ATLAS data”
 - Other topics: couplings to fermions, differential cross section,...

- ATLAS results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
Production and decay

- $\Gamma_H \sim 4 \text{ MeV } @ \ m_H = 125 \text{ GeV}$
- $H \rightarrow WW$: allow a broad range of masses to be “scanned”
- $H \rightarrow ZZ/\gamma\gamma$: distinct signatures, but low statistics

- Couplings determined by the mass: $g_{Hff} = \frac{m_f}{v}$; $g_{HVV} = \frac{2m_V^2}{v}$; ...
H → γγ overview

- **L = 20.7(4.7) fb⁻¹** (2012 (2011), √s = 8(7) TeV)

- **Simple signature**: pair of high-\(p_T\) isolated photons

- **Mass**: \(m_{γγ}^2 = 2p_γ₁p_γ₂ (1 − \cos θ) \approx p_γ₁p_γ₂ θ^2\)

- **Electron energy scale**: stability with pile-up and with time

- **Photon ID**: main syst. unc. on signal yield (2.4%)
 \((ε_{ID}(E_T, η) \sim 85% − 95\%, \text{ for } E_T^γ > 30 \text{ GeV})\)

A. Palma (LIP & FCUL) ● Higgs properties @ ATLAS
$H \rightarrow \gamma\gamma$ sub-channels

di-photon selection

- One-lepton
 - $W(\rightarrow l\nu)H$, $Z(\rightarrow ll)H$
- E_T^{miss} significance
 - $W(\rightarrow l\nu)H$, $Z(\rightarrow \nu\nu)H$
- Low-mass two-jet
 - $W(\rightarrow jj)H$, $Z(\rightarrow jj)H$
- High-mass two-jet
 - VBF
 - Tight
 - Loose
- 9 p_{Tt}-η-conversion
 - ggF

Event categorization: increase sensitivity to signal and to separate Higgs production mechanisms

Diphoton thrust axis in the transverse plane:

$$p_{Tt} = |(\vec{p}_T^{\gamma_1} + \vec{p}_T^{\gamma_2}) \times \hat{t}| \Leftrightarrow \hat{t} = (\vec{p}_T^{\gamma_1} - \vec{p}_T^{\gamma_2})/|\vec{p}_T^{\gamma_1} - \vec{p}_T^{\gamma_2}|$$
$H \rightarrow \gamma\gamma$ background

- Irreducible background: QCD $\gamma\gamma$ production ($\sim 75\%$)
- Reducible background: γj and jj (jets misidentified as photons), and DY (mis-reconstruction of electrons) ($\sim 25\%$)
- Shape parameters and the normalization of the background determined by a fit to the data

$\star m_{\gamma\gamma} = 126.8 \pm 0.2\text{(stat.)} \pm 0.7\text{(syst.)} \text{GeV}$

\star main syst. unc.: photon energy scale

\star significance of the observed peak is 7.4σ
Signature: 2 pairs of same-flavour, opposite-charged, isolated leptons

- Leptons assigned to **quadruplets** of the same flavour and opposite charge, with $p_T > 20, 15, 10$ GeV for leading leptons

- **Electron ID & reco:** main syst. unc. on signal yield (2.4% - 9.4%)

Diagram:

- $H \rightarrow ZZ^* \rightarrow 4\ell$ overview

- **Higgs properties @ ATLAS**

Figures:

- **Reconstruction Efficiency:**
 - $15 < E_T < 50$ GeV
 - **ATLAS** Preliminary
 - 2011 data $\sqrt{s}=7$ TeV $\int L dt = 4.7$ fb$^{-1}$
 - 2011 MC
 - 2012 data $\sqrt{s}=8$ TeV $\int L dt = 20.3$ fb$^{-1}$
 - 2012 MC

- **Efficiency:**
 - ATLAS Preliminary
 - $|\eta| < 2.47$
 - $L dt = 20.3$ fb$^{-1}$
 - $\sqrt{s} = 8$ TeV $Z \rightarrow ee$
 - $|\eta| < 2.47$
 - Loose
 - LooseLLH
 - Medlepton
 - Medlepton
 - Tight
 - VeryTightLLH
H → ZZ* → 4ℓ backgrounds

- **Irreducible**: continuum ZZ production is the largest background
- Normalization and $m_{4\ell}$ shape both taken from simulation
- Single resonant Z peak and high mass resonance used to constrain ZZ contribution
H → ZZ* → 4ℓ backgrounds

- **Reducible:** mainly $Z + \text{jets}$ and $\bar{t}t$ processes (jets faking leptons)
 - composition depends on the flavour of the sub-leading lepton pair ($\ell\ell + \mu\mu$, $\ell\ell + ee$)

- **Approach:**
 - Normalization from data-driven methods: signal yields extrapolated from CRs using transfer factors obtained from simulation control samples
 - $m_{4\ell}$ shape derived from background simulation using relaxed lepton selection

ATLAS Preliminary

$\mu^+\mu^-/e^+e^- + \mu^+\mu^-$

$\sqrt{s} = 7$ TeV: $\int L dt = 4.6$ fb$^{-1}$

$\sqrt{s} = 8$ TeV: $\int L dt = 20.7$ fb$^{-1}$
Each $H \rightarrow ZZ^* \rightarrow 4\ell$ candidate is assigned to one of the three categories:

- **VBF-like**: 2 high-p_T jets; $|\Delta \eta_{jj}| > 3; m_{jj} > 350$ GeV
- **VH-like**: not VBF-like; additional isolated lepton with $p_T > 8$ GeV
- **ggF-like**: not VH- or VBF-like

* $m_{4\ell} = 124.3^{+0.6}_{-0.5} \text{ (stat.)}^{+0.5}_{-0.3} \text{ (syst.)}$ GeV

* significance of the observed peak is 6.6σ
Signature: 2 oppositely charged isolated leptons and E_T

- $e\mu$ pair: dominates sensitivity to the Higgs boson signal
- same flavour: larger backgrounds (DY)
- cannot reconstruct a narrow mass peak due to neutrinos:

$$m_T = \sqrt{(E_T^{\ell\ell} + E_T)^2 - |p_T^{\ell\ell} + \vec{E}_T|^2}$$

(with $E_T^{\ell\ell} = p_T^{\ell\ell} + m_{\ell\ell}$)

Higgs spin 0: collinear leptons (low $m_{\ell\ell}$ and $\Delta \phi_{\ell\ell}$) \Rightarrow suppress WW background

Production mechanism: ggF (0 or 1 jet); VBF (\geq 2 jets; low bkg and low theory uncertainty)

- VBF: $|\Delta y_{jj}| > 2.8$; $m_{jj} > 500$ GeV

Jet energy scale and resolution and b-tagging efficiency are the main sources of experimental systematic uncertainty
H → WW^* → ℓνℓν background

<table>
<thead>
<tr>
<th>Background</th>
<th>Why fake signal?</th>
<th>criteria to reduce</th>
<th>normalized from</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>large irreducible bkg</td>
<td>low (m_{ℓℓ})</td>
<td>data</td>
</tr>
<tr>
<td>top (tt and single top)</td>
<td>lose a b-jet</td>
<td>b-jet veto</td>
<td>data</td>
</tr>
<tr>
<td>W+jets</td>
<td>jet fakes (ℓ)</td>
<td>tight iso & (ℓ) ID</td>
<td>data</td>
</tr>
<tr>
<td>Z+jets</td>
<td>fake/real (E_T)</td>
<td>(E_T) + low (m_{ℓℓ})</td>
<td>data</td>
</tr>
<tr>
<td>other diboson</td>
<td>lost/misidentified (ℓ)</td>
<td>veto extra (ℓ)</td>
<td>MC</td>
</tr>
</tbody>
</table>

| \(H\) to WW* to \(ℓνℓν\) background |

- **ATLAS**
 - \(\sqrt{s} = 8\) TeV
 - \(\int Ldt = 20.7\) fb\(^{-1}\)
 - \(H\to WW^* \to eνμν + 0\) jets

- Data 2012
- Total sig.+bkg.
- SM Higgs boson
 - \(m_H = 125\) GeV

<table>
<thead>
<tr>
<th>Events / 10 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

\(m_{ℓℓ}\) [GeV]

- WW CR, \(N_{jet} \leq 1\) final states:
 - \(\Delta\phi_{ℓℓ}\) criteria is removed
 - \(m_{ℓℓ}\) bounds are modified

A. Palma (LIP & FCUL) - Higgs properties @ ATLAS
$H \rightarrow WW^* \rightarrow \ell\nu\ell\nu$ transverse mass

- Excess of events observed in data
- VBF contributes 81% of the predicted signal in the $N_{jet} \geq 2$ final states
- Maximum deviation (4.1σ) at $m_H = 140$ GeV

ATLAS

- Data 2011+2012
- Total sig.+bkg.
- SM Higgs boson $m_H = 125$ GeV
- $\sqrt{s} = 7$ TeV $\int L dt = 4.6$ fb$^{-1}$
- $\sqrt{s} = 8$ TeV $\int L dt = 20.7$ fb$^{-1}$
- $H \rightarrow WW^* \rightarrow \ell\nu\ell\nu + 0/1$ jets

- $H \rightarrow WW^* \rightarrow e\nu\mu\nu + 2$ j

- ATLAS
- $\sqrt{s} = 7$ TeV $\int L dt = 4.6$ fb$^{-1}$
- $\sqrt{s} = 8$ TeV $\int L dt = 20.7$ fb$^{-1}$
- $H \rightarrow WW^* \rightarrow e\nu\mu\nu + 2$ j
Mass measurements and signal strengths

Signal strength: \(\mu = \frac{\sigma_{\text{observed}}}{\sigma_{\text{SM}}} \)

ATLAS

- \(m_H = 125.5 \text{ GeV} \)

<table>
<thead>
<tr>
<th>Process</th>
<th>(\mu) (stat)</th>
<th>(\mu) (sys)</th>
<th>(\mu) (theo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H \to \gamma\gamma)</td>
<td>1.55(^{+0.33}_{-0.28})</td>
<td>0.23 (-0.22)</td>
<td>0.18 (+0.18)</td>
</tr>
<tr>
<td>(H \to ZZ^* \to 4l)</td>
<td>1.43(^{+0.40}_{-0.35})</td>
<td>0.35 (-0.32)</td>
<td>0.20 (+0.20)</td>
</tr>
<tr>
<td>(H \to WW^* \to 4l \nu \nu)</td>
<td>0.99(^{+0.31}_{-0.28})</td>
<td>0.20 (-0.21)</td>
<td>0.15 (+0.15)</td>
</tr>
<tr>
<td>Combined</td>
<td>1.33(^{+0.21}_{-0.18})</td>
<td>0.13 (-0.14)</td>
<td>0.12 (+0.12)</td>
</tr>
</tbody>
</table>

Total uncertainty ± 1\(\sigma \) on \(\mu \)

- \(\sigma_{\text{stat}} \)
- \(\sigma_{\text{sys}} \)
- \(\sigma_{\text{theo}} \)

\(\mu \) largest deviation (\(\sim 1.9\sigma \)) observed in

\(H \to \gamma\gamma \)

A. Palma (LIP & FCUL) • Higgs properties @ ATLAS
Exploit sensitivity offered by categories to fit separately vector-boson mediated and gluon mediated processes
Data recorded by the ATLAS experiment in 2011/2012 allowed to test the fundamental properties of the discovered Higgs boson

Significance of the observed mass peak is 7.4σ in $H \rightarrow \gamma\gamma$ and 6.6σ in $H \rightarrow ZZ \rightarrow 4\ell$ channel (discovery level in each of these channels)

Mass of the Higgs boson measured to be $m = 126.8 \pm 0.2\text{(stat.)} \pm 0.7\text{(syst.)}$ in $H \rightarrow \gamma\gamma$ and $m = 124.3^{+0.6}_{-0.5}\text{(stat.)}^{+0.5}_{-0.3}\text{(syst.)}$ in $H \rightarrow ZZ \rightarrow 4\ell$ (better than 9 per mil)

All measurements are consistent with expectations for the SM Higgs boson

Acknowledgements:
References

Papers:

Conference notes:
- ATLAS-CONF-2013-034 (Couplings Combination)
- ATLAS-CONF-2013-030 (Higgs to $WW(\ell\nu\ell\nu)$)
- ATLAS-CONF-2013-014 (Combined of Mass)
- ATLAS-CONF-2013-012 (Higgs to Diphoton)
- ATLAS-CONF-2013-013 (Higgs to 4 leptons)
Backup Slides
Statistical method

- Construct a likelihood of Poisson probabilities, with expected numbers of events:

\[N^k = n^k_{\text{sig}} + n^k_{\text{bkg}} \]

- For the analysis \(k \), signal scaling factors per each production \(i \) and decay \(f \):

\[n^k_{\text{sig}} = \left(\sum_i \mu_i \times \sigma_i,\text{SM} \times A^k_{if} \times \epsilon^k_{if} \right) \times \mu_f \times BR_{f,\text{SM}} \times \mathcal{L}^k \]

 - cross section modifier: \(\mu_i = \sigma_i / \sigma_i,\text{SM} \)
 - branching ratio modifier: \(\mu_f = BR_f / BR_{i,\text{SM}} \)

- Test hypothesized values of parameter of interest \(\mu \) with profiled likelihood ratio:

\[q_\mu = -2 \Delta \ln \mathcal{L} = -2 \ln \frac{\mathcal{L}(\text{data}|\mu, \hat{\theta}_\mu)}{\mathcal{L}(\text{data}|\hat{\mu}, \hat{\theta})} \]

 - maximized likelihood for a fixed \(\mu \)
 - \(\mu \) and \(\theta \) that maximize likelihood

A. Palma (LIP & FCUL) - Higgs properties @ ATLAS