Flavor Signals at SUSY benchmark points

Toru Goto (YITP, Kyoto U.)

October 06, 2005 @ICFP2005

work in progress with:

Y. Okada (KEK), T. Shindou (SISSA) and M. Tanaka (Osaka).
Introduction

SUSY is intensively studied for years, as a promising candidate of the new physics beyond the SM.

Simplest SUSY extension of the SM: MSSM

MSSM provides...

- New particles (superpartners).
- New source of flavor mixing/CP violation.
- Dark matter candidate (stable LSP).

In general, MSSM has too many (> 100) parameters in the SUSY breaking sector.

Simple assumptions on the SUSY breaking sector are required for actual studies.

⇒ Minimal supergravity.
Minimal supergravity model (mSUGRA, CMSSM)

- \(\mu_G: m_0, m_{1/2}, A_0 \)
- \(\mu_W: \) radiative EWSB.
- \(\tan \beta = \langle H_2 \rangle / \langle H_1 \rangle, \sgn(\mu), V_{\text{CKM}}, \) quark/lepton masses.

- EWSB/squark flavor mixing induced by running effect.
 \[
 \delta m_H^2 \sim m_0^2 \text{tr} Y_u Y_u^\dagger \log \frac{\mu_W}{\mu_G}, \quad \delta m_Q^2 \sim m_0^2 Y_u Y_u^\dagger \log \frac{\mu_W}{\mu_G}.
 \]

- Squark flavor mixing also governed by \(V_{\text{CKM}}. \)

- Lepton flavor conserved (no \(\nu_R \)).
Benchmark points

- The parameter space is still huge for detailed study.
- Cosmology excludes much of parameter space.

Benchmark points are proposed for LHC/ILC studies.
- SPS (Snowmass 2001)
- Battaglia et al., LCWS05

Flavor signals @ benchmark points?

(Feng, LCWS05)
Here we take three benchmark points as references.

- Bulk point
- Stau coannihilation
- Focus point

The model is extended to SU(5) SUSY-GUT with ν_R.

\Rightarrow Additional sources of flavor mixing:

- ν Yukawa couplings / M_{ν_R} ($\leftarrow \nu$ mixing).
- GUT scale \Leftrightarrow Planck scale running.
“Bulk point”

- LSP = χ_1^0 (\tilde{B}-like).
- Annihilate to $\ell \ell$ through $\tilde{\ell}$ exchange.
- $m_0 < m_{1/2} \approx 250$ GeV.
“Stau coannihilation”

- LSP = χ^0_1 (\tilde{B}-like).
- $m(\tilde{\tau})$ close to $m(\chi^0_1)$.
- $\tilde{\tau} \chi^0_1 \rightarrow \tau \gamma$ enhanced.
“Focus point”

- LSP $= \chi^0_1$ (\tilde{h}-like).
- Annihilate to $W^+ W^-$ through χ^{\pm} exchange.
- $\mu < M_1 (\approx 0.4 m_{1/2}) \ll m_0$.

![Graphical representation](image-url)
SU(5) SUSY-GUT $\oplus \nu_R$

An extension of mSUGRA, introducing heavy Majorana ν_R and Yukawa coupling in ν sector.

μ_P: $m_0, m_{1/2}, A_0$ (mSUGRA type SUSY breaking).

μ_G: SU(5)\rightarrowSU(3)\timesSU(2)\timesU(1) by $\langle \Sigma \rangle$.

μ_R: ν_R integrated out.

μ_W: EWSB. $\tan \beta$, sgn(μ), V_{CKM}, V_{MNS}, q/\ell/\nu masses.

- Flavor mixing in $\tilde{d}_R \Leftarrow \nu$-Yukawa & GUT interactions.

- LFV in $\tilde{\ell}_L \Leftarrow \nu$-Yukawa.

($\mu \rightarrow e\gamma$ constraint)

October 06, 2005 @ICFP2005
New CP violating phases appear @μ_G.

$$10_i = \left\{ Q_i, \ (V_{\text{CKM}}^\dagger U^c)_i, \ e^{i\phi_i^L} E^c_i \right\},$$

$$\bar{5}_i = \left\{ D^c_i, \ e^{-i\phi_i^L} L_i \right\},$$

- $\phi_i^L \Leftrightarrow$ lepton flavor number; physical in a model with LFV.
- Complex phases induced in \tilde{d}_R mass matrix (Moroi).
Numerical results

Two patterns for the ν-Yukawa/$M_\nu R$ structure studied.

- “Degenerate”: $M_\nu R \propto 1$.

- “Non-degenerate”: $M_\nu R \not\propto 1$, a texture $Y_\nu \propto \begin{pmatrix} * & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$ assumed.

 1-2 mixing ($\mu \rightarrow e \gamma, \varepsilon_K$) smaller compared to the degenerate case.

Fixed parameters:

- $q/l/\nu$ masses, V_{us}, V_{cb}, V_{MNS}.
- $m_0, m_{1/2}, A_0, \tan \beta$, for each benchmark point.
 - μ and A_0 are taken as real (to avoid large EDMs).

Varied parameters:

- $|V_{ub}|, \phi_3, \phi_i^L, \mu_R$.
 - $M_\nu R$ scales as $\det M_\nu R = \mu_R^3$.
 - Y_ν chosen to reproduce ν masses and V_{MNS}.
“Bulk point”: $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$

- $m(\tilde{\ell}) \sim 200$ GeV
 \Rightarrow LFV enhanced.
- $\mu_R \gtrsim 10^{13}$ GeV excluded for degenerate case.
- $\mu_R \gtrsim 10^{14}$ GeV excluded for non-degenerate case.

SUSY contributions to quark flavor observables are strongly constrained.
Time-dependent CP asymmetries

\[S(B \rightarrow \phi K_S) \]

- mSUGRA
- SU(5) \(v_R \), degenerate
- SU(5) \(v_R \), non-degenerate

\[S(B \rightarrow K_{CP} \gamma) \]

- mSUGRA
- SU(5) \(v_R \), degenerate
- SU(5) \(v_R \), non-degenerate

October 06, 2005 @ICFP2005
Δm_{B_s}, εK

![Graph 1: Δm_{B_s} vs μ_R](image1)

- mSUGRA
- SU(5) v_R, degenerate
- SU(5) v_R, non-degenerate

![Graph 2: $\varepsilon_K/(\varepsilon_K)_{SM}$ vs μ_R](image2)

- mSUGRA
- SU(5) v_R, degenerate
- SU(5) v_R, non-degenerate
“Stau co-annihilation”: $\mu \rightarrow e \gamma$, $\tau \rightarrow \mu \gamma$

- Large $\tilde{\tau}_L-\tilde{\tau}_R$ mixing required for $m(\tilde{\tau}_1) \sim m(\chi^0_1)$.
 \Rightarrow $\mu \rightarrow e \gamma$, $\tau \rightarrow \mu \gamma$ more enhanced than “bulk”.
- $m(\tilde{\ell}) \sim 300$ GeV.
- $\mu_R \gtrsim 10^{13}$ GeV excluded for both cases.

SUSY contributions to quark flavor observables are constrained.
Time-dependent CP asymmetries

"Stau co-annihilation"

$m \leq 0.70$

μ_R [GeV]

m_{SUGRA}

SU(5) v_{R^*} degenerate

SU(5) v_{R^*} non-degenerate

$m \leq 0.70$

μ_R [GeV]

m_{SUGRA}

SU(5) v_{R^*} degenerate

SU(5) v_{R^*} non-degenerate
$\Delta m_{B_{s}}, \varepsilon K$

"Stau co-annihilation"

- mSUGRA
- SU(5) ν_{R}, degenerate
- SU(5) ν_{R}, non-degenerate

$\Delta m(B_{s})$ [ps$^{-1}$]

$\varepsilon_{K}/(\varepsilon_{K})_{SM}$

μ_{R} [GeV]
“Focus point”

\[
\begin{align*}
\tan \beta &= 10 \\
m_{1/2}(\mu_G) &= 284 \text{ GeV} \\
A_0 &= 0 \\
\text{degenerate}
\end{align*}
\]

- \(m_0 \uparrow \) for \(\mu_R \uparrow \) in order to obtain \(\mu \sim 100 \text{ GeV} \) (required for \(\tilde{h} \)-like LSP).

\[m(\tilde{q}, \tilde{\ell}) > 3 \text{ TeV}, \text{ decouples.} \]
"Focus point": $\mu \rightarrow e \gamma$, $\tau \rightarrow \mu \gamma$

- Degenerate, $\mu_R = 2 \times 10^{12}\text{GeV}$
- Degenerate, $\mu_R = 2 \times 10^{13}\text{GeV}$
- Non-degenerate, $\mu_R = 2 \times 10^{12}\text{GeV}$
- Non-degenerate, $\mu_R = 2 \times 10^{13}\text{GeV}$
Time-dependent CP asymmetries

"Focus point"
Δm_{B_s}, ε_K

"Focus point"

- mSUGRA
- SU(5) ν_R^\prime, degenerate
- SU(5) ν_R^\prime, non-degenerate

$\Delta m(B_s)$ [ps$^{-1}$]

$\varepsilon_K / (\varepsilon_K)_{SM}$

μ_R [GeV]
Summary

Flavor observables studied in SU(5) SUSY-GUT $\oplus \nu_R$ for “benchmark points”.

<table>
<thead>
<tr>
<th></th>
<th>$\mu \rightarrow e\gamma$</th>
<th>$\tau \rightarrow \mu\gamma$</th>
<th>ε_K</th>
<th>B obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Bulk point”</td>
<td>D large</td>
<td>$\sim 10^{-9}$</td>
<td>$\sim 5%$</td>
<td>small</td>
</tr>
<tr>
<td></td>
<td>ND large</td>
<td>$\sim 10^{-8}$</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>“Stau-coannihilation”</td>
<td>D large</td>
<td>$\sim 10^{-9}$</td>
<td>$\sim 5%$</td>
<td>small</td>
</tr>
<tr>
<td></td>
<td>ND large</td>
<td>$\sim 10^{-9}$</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>“Focus point”</td>
<td>D $\sim 10^{-13}$</td>
<td>$\sim 10^{-12}$</td>
<td>$\sim 5%$</td>
<td>small</td>
</tr>
<tr>
<td></td>
<td>ND small</td>
<td>$\sim 10^{-12}$</td>
<td>small</td>
<td>small</td>
</tr>
</tbody>
</table>

(D=Degenerate, ND=Non-degenerate)