Gravitational Acceleration Accurately Determined

Zheng－Hao Huang（黃政豪），Yu－Chun Hsu（許鈺駿）
 Instructor：Yung－Fu Chen（陳永富），TA：Yu－Ting Lin（林侑鋌） Experimental Physics II，Department of Physics，National Central University

Motivation

To measure the acceleration of gravity at a location as much precision as possible．
To define a real pendulum is not so easily as a simple pendulum．
To make a high precision measurement of g without too many complicated variables．

Goal

To get an exact value of \mathbf{g}（five significant figures）by Kater＇s pendulum．
The value g should be．．．．．．$g \approx g_{0}\left(1+0.0052884 \sin ^{2} \phi-0.0000059 \sin ^{2} 2 \phi\right)-0.000003086 h$

Standard g（m／s	L（m）	T（sec）	g（m／s $\left.\mathbf{s}^{\mathbf{2}}\right)$	error
9.7886	0.616070	1.5752	9.8021	0.138%
9.7886	0.616070	1.5750	9.8046	0.163%
9.7886	0.616070	1.5740	9.8170	0.290%
9.7886	0.616070	1.5754	9.7996	0.112%

[^0]

Summary

－Setup a Kater＇s pendulum
－Eliminate the friction almost
－Try two methods to find the better mass combination of the bobs and the collars
－Determine Time and Length accurately
■ Finally，we get the best value of g whose error is only -0.002%

Reference

－Kater，Henry（1818）．＂An account of experiments for determining the length of the pendulum vibrating seconds in the latitude of London＂．Phil．Trans．R．Soc．（London） 104 （33）：109．Retrieved 2008－11－25．
－D．Candela，K．M．Martini，R．V．Krotkov，and K．H．Langley．＂Kater pendulum in the teaching lab＂ Physics Department，University of Massachusetts，Amherst，Massachusetts 01003.

[^0]: Calculated $\mathrm{g} \quad L=0.616070(\mathrm{~m}) \quad g=9.7884 \mathrm{~m} / \mathrm{s}^{2}$
 $9.7886 \mathrm{~m} / \mathrm{s}^{2} \quad \boldsymbol{T}=1.5763(\mathrm{sec})$ error $=-\mathbf{0 . 0 0 2} \% \pm \mathbf{0 . 0 0 1} \%$

